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THE GENERAL MOTION OF THE AEROPLANE
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306 S. BRODETSKY ON THE

INTRODUCTION

1. Comparatively little progress has been made in the mathematical study of the
general motion of the aeroplane. Lanchester’s phugoids, steady motion, and the small
deviations obtained when an aeroplane has an actual motion differing slightly from
the steady motion appropriate to the conditions of the controls and engines, represent
almost the whole of the mathematics of the rigid dynamics of the aeroplane in the
present stage of development of the study of the subject. Interesting results have
been obtained by L. Hopf and his collaborators (Aerodynamik by L. Hopf, Springer,
Berlin, 1934); but general solutions in explicit form are rarely given. Thus the only
information of a general character concerning the dynamics of the aeroplane, i.e.
unassociated with steady motion, is the theory of Lanchester’s phugoids; and although
Lanchester published this in 1908, reference to the literature on the subject shows
that not only has practically no advance been made on Lanchester’s work, but that its
significance as a first approximation under certain conditions is not yet fully understood.
It is stated by Hopf (ibid. p. 231), but he does not specify the exact conditions, and
does not study further developments.

It appears, therefore, that there has been almost a generation of stagnation in the
mathematical study of aeroplane dynamics, and the object of the present paper is to
initiate a systematic mathematical study of the equations of motion of the aeroplane.
The general idea is that of finding, in the first instance, an approximate solution, and
then improving it by proceeding to a second, or, if necessary, to a still higher approxima-
tion. The mathematical process consists of discarding the time as the independent
variable, and using one of the Eulerian angles, the pitch, the roll or the yaw, instead—
the choice being to a large extent suggested by the nature of the particular kind of
motion contemplated; thus the pitching angle must obviously be used when studying
longitudinal motions; the yawing angle is convenient in dealing with spinning motions;
the rolling angle is convenient in dealing with the sideways roll. Sometimes we can use
either one angle or another almost with equal convenience, e.g. in the Immelmann turn.

In order to obtain a process of successive approximations we assume that one com-
ponent of velocity of the centre of gravity of the machine predominates over the other
two components, and that the angular velocity of the machine is small compared to
this predominating component; an exact definition of smallness for the angular velocity
will be found in the body of the paper. We express all components of velocity of the
centre of gravity and the components of angular velocity as ratios of the gliding velocity
of the machine, and then consider three typical standard ““ conditions’” of the machine,
according as the elevator is adjusted for ““standard normal” flight, ““standard diving”’
flight or “standard stalled” flight, as defined below. Using experimental evidence
as to the kind of air-resistance forces obtained in these three types of condition of the
machine, we find that first approximations can be deduced by means of a judicious
comparison of the orders of magnitude of the various terms in the equations of motion.
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GENERAL MOTION OF THE AEROPLANE 307

The method can be applied to any condition of the machine, i.e. for any given position
of the elevator, or indeed of the controls generally. We can also deal with the case of
moving controls, and in this paper we indicate how to deal with the elevator moving
during the motion, as e.g. in flattening out from a dive, a problem solved recently by
a collaborator.

The method can, of course, be used with the machine as a glider, or with the engines
and airscrews in action.

We find with comparative ease that, under certain conditions, Lanchester’s phugoids
represent a first approximation to general longitudinal normal flight.

We also find that, in addition to Lanchester’s first approximation, other first approxi-
mation paths can be obtained and various new paths are dealt with briefly, e.g. the
“extended” phugoids, which are more correct than Lanchester’s phugoids. The method
can also be applied to ““ three-dimensional”” phugoids which give the Immelmann turn;
the slow spin of the stalled aeroplane; the slow roll; etc. In fact, first approximations
to the most important aerobatics have already been obtained by the method of this
paper. Some have been worked out in detail already; others are now being investigated
by the writer and collaborators. Further, a method has been devised for the systematic
study of the equations of motion for the deduction of possible first approximations in
an a priori manner.

Second and higher approximations are not difficult to obtain, when once a first
approximation exists. In particular, the looping motion of an aeroplane in normal
flight has been worked out by one of the author’s research pupils, to a second approxi-
mation, by means of a mathematical process which represents a possible alternative
to step-by-step integration and has the advantage of being applicable 1mmed1ately
to any initial conditions.

We shall find it convenient to make extensive use of the notation (slightly modified)
and data of Aerodynamic Theory (edited by W. F. Durand), Division N, “ Dynamics of
the airplane”, by B. Melvill Jones. The reference will be: “Jones, p. ...”.

I. LONGITUDINAL MOTION WITHOUT SCREW THRUST

EQUATIONS OF MOTION: THE COEFFICIENTS OF STATICAL
AND DYNAMICAL STABILITY, K, T

2. We consider first the symmetrical aeroplane in longitudinal motion relative to
the air, and to begin with we take the case where there is no screw thrust. Let mg be
the total weight acting at the centre of gravity G in the vertical plane of longitudinal
motion. Let Gx, Gz (fig. 1) be axes fixed in the machine, and let u, w be the velocity
components of G along these axes. Let the x axis make an angle # with the horizontal,
in the sense z — x, and let ¢ (=d0/dt) be the angular velocity of the machine. Let the
air resistance produce force components X, Z along the axes Gx, Gz; and let M in the

same sense as ¢ be the moment produced by the air resistance.
38-2
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308 S. BRODETSKY ON THE

It is convenient to define the directions of Gx, Gz relative to the machine as follows.
We assume the tail plane and elevator to be in some definite and fixed position in the aero-
plane (the rudder and ailerons being of course in their neutral or zero positions), and we
choose G to be that direction relative to the machine for which, when there is no angular
motion, the air-resistance moment is zero. Gz is then taken perpendicular to Gx in
the sense shown in fig. 1. If the tail plane or the elevator is turned, this direction
M = 0 is changed too.

Fic. 1

Let V be the resultant velocity of G, i.e. /(%4 w?), and in the case of steady motion
let us add a suffix to V or to any other symbol in order to indicate, when necessary,
the direction of G relative to the horizontal. Let y be the gliding angle of the machine,
with the given and fixed position of the tail plane and elevator. The circumstances
of the steady glide are u =V__, w = 0, § = —7y, ¢ = 0, and the equations of the steady

s
glide are 0 =mgsiny+X_,, 0=mgcosy+Z_,, 0=M, (21)
while the equations of general longitudinal motion are

m(i+quw) = —mgsinf+X, m(w—qu) =mgcos+2, Bj= M, (2-2)

where B is the moment of inertia of the machine about an axis at G perpendicular to
the longitudinal plane.
By the theory of dimensions, we can, for a given shape of machine, assume that
X/pV2S, ZpV2S, M|pV2Ss,

where p is the density of the air, § is the wing area, and s is the semi-wing span, are
functions of the dimensionless arguments

wlV, sqlV,
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GENERAL MOTION OF THE AEROPLANE 309

where s is used as a characteristic length in the machine. As usual, we neglect the
viscosity and elasticity of the air; we also neglect the possibility that X, Z may involve
accelerations; but, in the case of M, we introduce a term involving the w acceleration
(Jones, p. 124) when discussing the stability of steady motion.

If L, D are the lift and drag of the machine, then

w U u w

where L/pV?2S, D/pV?2S are functions of w/V, sq/V. Let us write

D, (2-3)

1404 1404 Vv
where &, k;, k are the usual ““coefficients”, expressed as dependent upon both the
incidence and the rotation. We at once get

X, = —pV2, 8ky(0,0), Z_,——pV2 Sk (0,0), (2-5)

L= pV$k(5 F)s D= pV2ko( T ) R=J(L21D%) = o728k 3, F) (24)

so that

pV2,Skp(0,0) = mgsiny, pV2 Sk;(0,0) =mgcosy, pV2,Skg(0,0) =mg, (2:6)

k»(0,0)
and tan
7=k, (0,0)
The moment M is zero in the steady motion, when %, w, @, g are zero. If now these
variations from the steady motion are small, A/ is linear in terms of these quantities.
Owing to the choice of the direction Gx we can obviously omit #; it follows that, using
variables of zero dimensions, we can write

M = —a constant times pV2Ss KI—/~{—J;—{—/1V2+/€M2(1§, SI—g)} , (2-8)

where £,,, contains terms of the second and higher orders in the variables indicated,
and «, A are constants depending on the aeroplane and the condition of the controls,
position of centre of gravity, etc.

Let us now introduce the notation

(2:7)

I{%:V', I7u~Eu’ %Ew/’ % =q, 5%-:-3’; (2-9)
the equations of motion (2-2) become
8 )=y M)
(% u') = cosf—cosy V’Z{V,tarﬁ (w'l/cz;;,s(’)g)]’/V’) +%;kL(W/£ZI(’)f£,/V/)},
/= ey PG +kM2($;’ tcI‘/C’L)}

(210)
in which the independent variable ¢ has been replaced by 6.
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310 S. BRODETSKY ON THE

The constant « will be called the coefficient of statical stability, since the machine is
statically stable, neutral, or unstable according as « is positive, zero, or negative.

The constant 7 will be called the coefficient of dynamical stability, for reasons that will
soon be adduced.

The values of k and 7 determine the different types of first approximations deducible
by the method of this paper.

EQUATIONS OF MOTION: FIRST APPROXIMATION

3. If we restrict ourselves to motions in which:
V'’ never becomes large or small, i.e. V' is of zero order in terms of some small
quantity to be defined in each condition of the aeroplane;
w’ is small, at least of the first order; so that
u’ is also of zero order (never becoming small, so that it is always of the same sign
which we shall assume to be positive) ; and
s'q’ is small, at least of the first order;
then we can write V' = /(u'24+w?) = u'(1+4w'?/u’?), and the equations of motion
become approximately

q'(%er’) = —sinf—siny(u'?+kp,u'w' +kp,u's'q’) +cosyu’w’,\
’ dw/ ’ 192 ’ ! .’ M ’ ’ €
q (V—&,@f-u ) = cosf—cosy(u'?+k; ww +kyu's'q") —sinyu'n’, (3-1)
d !
ql’gqﬁ— - _T(Ku/w/_l_urslq/),
1 dk,(w'|V', s'q'|V")
where ki, = S T Tdl L r’ 7 )
VSV A7) l 5
b 1 dk,(w' | V', s'q'|V") ‘
Mk VS V) A

in which w'/V’, 5'q’/V’ are put zero after the differentiation; similar definitions hold
for &y, kp,-

Itis convenient to have also the approximate equations of motion in Jones’s notation.
We get, after a little manipulation,

’ du’ ry : . 19 X 10 .?Cq 1ot
q(ﬁ—i—w)—-—smﬁ—smyu —(k;uw +k;usq),
dw’ ) z z
\=; —u') = cosl—cos u’2~(—“—’u’w’+4u’s’ ’), 3-3
q ( &0 Vs ES (3:3)
ld ' [PPN4 .’

qggz—r(mw—l—usq), |

in which x,, z,, ... are Glauert’s non-dimensional derivatives: x,, z, do not occur

. . o . .
explicitly, being absorbed in »'%. Further, x,, z,, m, as given by Jones remain un-
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GENERAL MOTION OF THE AEROPLANE 311

changed; but we shall assume that x, z, as given by Jones have been multiplied by
¢/s, and m,, as given by Jones has been multiplied by s/c, since he uses the chord ¢ instead
of the semi-span s as the characteristic length for the machine.

We note that

_Zu_ =y — — % 3.
kLw kL tan 14) ka kD h’ cot 7: qu /;; ) kD\q kD . .(5 4)
In what follows we shall find £, &,,, directly from the definitions (4-1) below; but for

ky, kp, we shall take their values in terms of Jones’s derivatives, since the functional
forms &, (w'/V',s'q'|V"), kp(w'|V’,s'q'|V’) are known only when there is no rotation,
ie. ¢ =0.

THE THREE STANDARD CONDITIONS OF THE SYMMETRICAL AEROPLANE

4. We shall in this first attack on the general problem consider three different stan-
dard conditions of the machine, produced by different adjustments of the tail plane
and elevator:

(1) Standard normal condition,
(II) Standard diving condition, and
(III) Standard stalled condition.

In order to define these standard conditions, let us measure the angle of true incidence ¢
from that direction of motion relative to the machine for which the lift is zero (Fig. 1).
If the tail plane or elevator is turned, this direction L = 0 is also changed slightly,
and we measure ¢ from the direction L = 0 appropriate to the actual position of tail
plane and elevator. In the absence of rotation, we have the lift and drag coefficients
k, and %, as functions of ¢. Hence, for any condition of the machine, which of course
defines the incidence of the glide, we have the gliding angle y as a function of the
angle of gliding incidence i_,. When this angle is zero, £; is zero, so that the gliding
angle is %7, and the dive is vertical.

Hence we define (II), the standard diving condition, as being the condition of the
machine when i_,, is zero, so that y = gm. This definition is obvious.

We define (II1), the standard stalled condition, as being the condition of the machine
when the incidence in the steady glide is that which gives maximum lift. This is also
an obvious definition.

To define (I), the standard normal condition, we note that at cruising incidence the
gliding angle for a conventional aeroplane is more or less the same as the angle of
incidence measured from the direction of zero lift of the machine. We therefore define
the standard normal condition as being the condition of the machine for whichy =i_,,
both being small (we add the last condition, since we can have y = ¢ for a large angle of
incidence, beyond stalling incidence). The ideal aeroplane discussed by Bryan (Stability
in Aviation, ch. v) belongs to this type, if his « is small, but not too small, say between
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312 S. BRODETSKY ON THE

3°and 10°. In the steady glide of an aeroplane in standard normal condition the
direction L = 0 is horizontal.
For a conventional machine we can write, approximately, in the absence of rotation,

k(0]V,0) = ky (i) = kygsinmi,  kp(w]V,0) = kp(i) = kpo FhpysinZi,  (41)

where ¢ = i_,+sin"!(w/V), and n is such a number that the stalling incidence is 7/2n
(nis generally between 4 and 6) ; £, is the maximum value of k;, namely, at the stalling
incidence; kj, is the minimum value of £;, and £, is another constant, whose value
(see Hopf, ibid. p. 99, fig. 76) is of the same order as k.

The definitions (4-1) take into account the stall, but are not very accurate for
small z, when it is better to use k(i) = ai, £k, () = b-+ci? where a, b, ¢ are certain
constants. Orders of magnitude are not affected, however, if we use (4-1) even for
small ¢.

k;g is usually a number like 0-6; £, is usually a number like 0-02. We do not
need the actual values here, but only some indication of the orders of magnitude as
they occur in practice.

Our value of £, makes it a minimum at ¢ = 0. This is not quite correct, but it is easily
seen that this is of no serious consequence in what follows.

We can write (2-6), (2:7) in the form

pV2,Sky(i_,) = mgsiny, pVZ Ski(i_,) =mgcosy, pVZ Skp(i_,) =mg, (42)
(i)
ki)

In order to calculate £;,, and £,,,, we can, in the definitions (3-2), make s'¢’/V" zero
before we differentiate with respect to w’/V'. Hence

tany = (43)

k. — Lt kL(i_y—i—sin“l(w’/V’).,O) kg (i_,,0) :{ 1. d/ngi)} — ncotni
Y wiv=o (W' [V") ki (ieys 0) k(i) dv )iy, e
b — Lt kD(i_qusin—l(w'/V’)f0_)~kD(z;y,0):f 1.de'(i)}
Pw = (w'[V") kD(Z—yi' 0) \kp(z) i i=i_y,
_ o s%n 21:’7 coty
kpssinmi_, ’
(4:4)

approximately by (4-1) using (4-3) for tany.

To find the orders of magnitude of £;,, £, we use the last two equations of (3-4)
with the numerical data given by Jones. We find that practically always £, can be
safely ignored.

For the three standard conditions we can therefore use:

(1) Standard normal condition:

. 1 . 2 . . . .
/CLw:~S“i—ﬁ_ys ka:'nsiny’ ky, is a number like 2; £, = 0.
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GENERAL MOTION OF THE AEROPLANE 313
(II) Standard diving condition:

ky, is infinite. In fact, however, &, always occurs with the factor cosy which is

zero. Now

cosyky,, = sinycotyncotni_, = sin 7,/]; EZ 7’; ncotni_, = nsiny kpf—LIf/:ZlS:ilil_zyi_
and as i_, = 0 so that y — {n, this quantity tends to the limit nk;4/k;,, a number like
80 or 100 for any conventional aeroplane.

kpw js, on our hypothesis, zero at i_, = 0; it is in fact quite negligible for an actual
machine.

k., like &, is infinite; but, like £;,, it occurs only in combination with cosy. Now
cosyk;, can be written z,/kp, and this is a number like 15 or 20 at standard diving
incidence.

kp, 1s ignored.

s
v

(1II) Standard stalled condition:

. . sin7/n . . . .
krw=0; kp, = Siny about 1} or 2; £, is very small; £p, = 0.
We now proceed to consider the numerical values of k, 4, 7, s" for ordinary aeroplanes.
If we write M as far as the first powers of ¢, w, w, we have, with Jones’s notation

(p. 133) adjusted for s instead of ¢,

M = —»—(pVSsm w+ pSs*m;w+pVSs?m, q).
Hence, by (2-8), we have k=" ) =T (4-5)
my ny '
__B +3
and M= —~pV Sm( 7 V—l—/l V2)

If we take ¢ as the independent variable and put (V_,/g) g=¢’ in (2:10), we find

Ic—z’z’ pV S(V) V'2( V: s'q’ Asqudw,)

7 ms \ g v )
Ve, S V. \2
so that we have T = P =2 (J) m,. (4-6)
ms \ g
But, by (4-2), we can write pV2,Sky = mg,

where £y is the resultant of the lift and drag coefficients for the incidence of the steady
glide.
mom,  pm,

Hence = = 555 k2 T’ (47)

where # is Glauert’s dimensionless parameter as defined by Jones (p. 183).

Vol. COXXXVIIL A. 30
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314 S. BRODETSKY ON THE

For any ordinary aeroplane m,, and therefore 7, is always positive.

In conventionally shaped aeroplanes we find that 7, the value of 7 in the standard
diving condition, 7y, the value of 7 in the standard normal condition, and 7, the value
of 7 in the standard stalled condition, bear to one another ratios like

Tp i Tyt Tg=4000:40:1, (4-8)

although there are, of course, considerable deviations from these average ratios in
actual machines.

For ordinary flying altitudes, # is in general a number of the order 10, and increases
with height above the earth’s surface, e.g. in stratospheric flight; k, is a number like
0-02 in the standard diving condition, 0-2 in the standard normal condition, and 0-6
in the standard stalled condition. Hence we see that for ordinary aeroplanes 7 is
several hundreds, so that 7}, is of the order of many thousands, while 7 can be generally
assumed to be of the order 10.

Although 7 decreases rapidly from 7, to 7, and then to 74, it appears that beyond
stalling incidence the dynamical stability coeflicient increases again, for in the expres-
sion

T = 'Likn;;] ,

ky decreases slightly after stalling incidence, and m, increases after stalling incidence.

Itisnot possible to define x numerically in any general manner, since its value depends
upon the position of the centre of gravity. The published results of wind tunnel and
other observations do not at present afford much information about «, and it would
seem to be desirable that experimenters should give the value of x in any motion
investigated. As far as such information is available we can state that in the standard
stalled condition « is certainly positive, and it can perhaps be assumed to be a number
like 6 or 8. If we assume stability, then for both the standard normal and the standard
diving conditions of the machine we may take « positive but small; although it may be
as much as } or 4, and in extreme cases can even be a number like unity at the former.
But we have to be prepared to use both positive and negative values of « in normal
and diving flight, so long as they are not large numerically.

A 1s positive and varies between 0-5 and zero.

- The value of s’ is rather uncertain, since

&

and, of course, the semi-span s and the gliding velocity V_,, differ widely from machine
to machine. If the machine, as used by Jones, is small, with s about 15 or 20 ft., then,
with a stalling velocity like 65 miles per hour, s’ is a number between 1/15 and 1/20
in the standard stalled condition; between 1/50 and 1/100 in the standard normal con-
dition; and between 1/300 and 1/600 in the standard diving condition.
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But if the machine is a large one, with s about 40 or 50 ft., or even more, then the
value of s’ is correspondingly larger, unless V., is also larger, which is usually the case.
In this paper we shall use approximations adapted to the machine used by Jones.

It is useful to note that 75’ = 2 v (4-9)

and that, in a conventional aeroplane, the values of 75" at standard diving, normal and
stalled conditions are numbers like 100, 10, and 2/3 respectively.

LONGITUDINAL STABILITY
USUAL VALUE OF 7 IN STANDARD NORMAL CONDITION

5. The discarding of ¢ as the independent variable is fundamental to the method
of this paper. In order, however, to obtain clear notions about the coeflicient of
dynamical stability, 7, it is necessary to consider the stability problem with ¢ as inde-
pendent variable. For this purpose we can use equations (3-1) with the definition

q'=D0,
where D means differentiation with respect to the time, multiplied by V_, /g; so that
2 _p= Voy 5-1
ThB=Y= g dt (5-1)

and for the stability discussion we use »
w=1l+u, w=uw, §=—y+0, ¢ =D0,

where quantities with suffix 1 are infinitesimal. To the first order of these infinitesimal
quantities, the equations of motion (3:1) become

Du, = siny—0, cosy—siny(1 4 2u; +kp,,w; +kp, ' DO,) +cos y wy,
Dw,— D0, = cosy—+0,siny—cosy(1+2u,+k;,w, +k;,s'Db;) —siny wy, (5-2)
D2, = —1(kw,+5"Db,+As'Dw,) ;

where k;,, kps k1,5 kp, are as defined in (3-2).
The determinantal biquadratic for deciding stability is therefore

D+2sinvy, siny kp,—cosy, s'siny kp, D +cosy,
2cosy, D+siny+cosyky, —1+4s cosyky,D—siny, (5:3)
0, As'tD + kT, D?+-s'1D.

39-2
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316 S. BRODETSKY ON THE
The coefficients of the various powers of D in this biquadratic are
13
s'7+3siny+-cosyky,+As'7(1—s" cos yk,),
KkT+5'7(3siny+cos y ky,,—kky,) +As'7(3siny —2s"siny cos y kr,—kp,)
+2+2siny cosy(kp,—kpy)s
7(8k siny 4215’ + 25" siny cos y ky,, —kp,, —kky, + kkp, +2s'),

(5+4)

2KT.

The conditions of stability are that these coefficients must all be positive, and, in
addition, the Routh discriminant must be positive. We see that a necessary condition
of stability is that 7 shall be positive. Since 7 is always positive for a conventionally
shaped machine, we must have « positive—this is indeed the important condition for
stability of the steady glide.

If we use the approximate values of &, kp,,, k;,, kp, of § 4, and the orders of magnitude
of s, we find that, in each of the three standard conditions of a conventional aeroplane,
the coeflicients (5-4) are all positive if k is positive without being absurdly large. Routh’s
discriminant is therefore the only additional condition, and it is easy to prove that:

(I) In the standard normal condition we have longitudinal stability of the steady
glide if « is positive, and if in addition 7, is greater than a quantity of order —2 in terms
of siny, which is small in normal condition.

(IT) In the standard diving condition, « positive is sufficient to ensure stability of
the steady glide.

(IIT) In the standard stalled condition, the longitudinal stability of the steady glide
can only be ensured if 7, is at least as big as of order — 2 in terms of the gliding angle
in the normal condition.

We shall therefore assume all through this paper, that 7, is at least of order —2
in terms of the small quantity sin y in the normal condition, and that if necessary it may
be assumed to be of order —3 in this small quantity.

(I) STANDARD NORMAL CONDITION: THREE SUBTYPES OF PHUGOIDS

6. Let us now consider the general motion when the aeroplane is in standard
normal condition. In this condition of the machine, siny is small, about 1/7 say. We
define siny as the first order small quantity; then using Jones’s machine as suggested
in §4, we see that s’ is of the second order. We can also take £;,, and £, to be of order
—1, &y, of order zero, and £y, negligible. As for 7y, we can take it to be of order —2
in siny, and, if we like, of order — 3.

We shall examine three subtypes which yield comparatively simple first approxima-
tions:
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(a) « of zero order; 7, of order —2, or larger;
(b) & small, of the first order; 7 of order —3, or larger;
(¢) «k negligible (machine statically neutral) ; 7, of order —2, or larger.

For each subtype we shall find a first approximation: (a) gives Lanchester’s
phugoids; (5) and (¢) give new first approximation paths.

7. (a) « of zero order; Ty of order —2, or larger; Lanchester’s phugoids. Let us assume
that ¢ is small, and of such a size that ¢’ is of zero order. Then the third equation of
motion (3-1) gives b __quéi, (1)

't di”

Since 7 is at least as big as of order —2, it follows that the right-hand side of (7:1)
is at least of the second order of smallness; and the left-hand side must also be of
this order of smallness. But s'¢’ is of the second order; hence, since « is of zero order,
it follows that w’ must be a small quantity of the second order.

If now we omit in the first two equations (3-1) all quantities which are of the same
order as siny, or smaller, we get the equations

,a’u'_ . b r9 r S/ , 1 ,dql .
ngw——sn'lﬁ, —qu —COSH'—U , W —~—;q _—I?;uﬁlqvvdiﬁ, (7 2)

as a first approximation. The first two equations give «’, ¢, and then w’ is given by the
third equation.

In terms of the primitive equations of motion (2-2) this means that we assume for
the components of air thrust X, Z,

(i) X=0, (i) Z=—pSkyu?. (7-3)

Thus (i) we neglect the drag. We are at present taking the air-screws as not in action;
we shall see later, §16, that in practice, generally, the action of the air-screws is
irrelevant to the validity of Lanchester’s phugoids as a first approximation, our present
assumption being replaced by the assumption that both the drag and the air-screw
thrust can be neglected (see Hopf, ¢bid. p. 231); and

(ii) we take the lift as a constant times the square of the forward velocity, which means in
effect that we assume constant angle of incidence, and neglect the effect of changes in
the w velocity component; further

(iii) we assume that longitudinally the machine adjusts itself instantaneously, so that, to our
degree of approximation, the motion is along the axis Gx, w’ being of the second order.
Lanchester describes this as meaning that the moment of inertia of the machine is neglected;
this is a rough and ready description of what actually happens if 7y is of order —2,
or larger.

Eliminating ¢’ between the first two equations (7-2), we deduce

du’ ’

Lo du , .
cos 0W —u 2@ = u'sind, (7-4)
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so that u' cosl = du'3+ A, (7-5)

where A4 is an arbitrary constant. This is the velocity equation for Lanchester’s phugoids,
which are thus obtained as a first approximation of the equations of motion of an
aeroplane in standard normal condition with « of zero order.

If we write (7-5) in the form

u'—3u’ cos = n®— 3n, (7-6)

where 7 is positive and equal to the value of #” when 6 = 0, we get

n2 (w2 (n2 w1 '
cosf = —3—(;) —(§ — l) (;) . (77
cos @
vy (i) (O

0<n?<l  n?-1 1<n%*3 n%=3 n?>3

1= uN\n  u=n un uw/in ufen
ql_ §/=0 ql+

Fic. 2

We deduce from the first equation (7-2) that

, d(cosf
qg = (du’ )3 (7'8)
-6) i g _ 2 1__{)(”_')"2 :
so that (7-6) gives n_3(n)+(3 25 (7-9)
The radius of curvature p is, approximately, u/6, i.e. ( V2,/g)u'[q’; hence
BRI T
p= i‘g* 5’!‘(5—7'25 n . (7-10)

It 1s not necessary to consider here the detailed properties of Lanchester’s phugoids;
but in order to prepare the ground for other first approximations, it is useful to examine
briefly the main forms of these phugoids as defined by the constants in the relation
between cos f and u’.
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If we plot cos# against «’ from (7-7), we obtain the various cases of fig. 2, and the
following classification of the paths:

(i) n%>3; tumbler or “looping”’ phugoids;

(ii) n? = 3; semicircular phugoid; '

(iii) 1<n?<3; inflected or “undulating” phugoids, really identical with (v), but
starting at a lowest point;

(iv) n? = 1; straight-line phugoid;

(v) 0<n?<1; inflected or “undulating” phugoids, really identical with (iii), but
starting at a highest point.

Lanchester’s phugoids are obtained where « is of zero order, whether positive or
negative, i.e. if the aeroplane is excessively stable, or excessively unstable, statically.
This is rather rare in practice. To a first approximation the two cases give the same
paths: the difference between the two cases is now being studied.

8. (b) « small, of the first order; Ty of order —3, or larger; extended phugoids. If k is
small, of the same order as siny, we do not obtain the simplified forms of the first two
equations (3-1) that lead to the Lanchester phugoids, because the third equation,
which makes «w’ of the second order, now makes w” only of the first order. If, however,
we take 7, to be of order —3 in siny, then we can ignore the right-hand side in (7-1)

altogether.
The three equations of motion (3-1) are now, to a first approximation,
/d ’ . 1,7 ’ ’,n ! ’ ’ !
q%:—smﬁ, —q'u’ =cosl—u?—k, u'w', kw'+sq =0. (81)

Our approximations in terms of the air-thrust components are
i) X=0, (i) Z:=~pﬂ&w(L+hM%y (8-2)

Hence we are once again neglecting the drag. But in the case of the lift, the effect of changes in
the w velocity component is included, and to this extent the approximation is better than in
the case of Lanchester’s phugoids. 7he moment of inertia is *“ neglected” .

The case « small, whether positive or negative, is important in practice, and since
the assumption that 7, is of order — 3 is not really a serious restriction, it would appear
that the “extended” phugoids now to be discussed are of better validity than Lan-
chester’s phugoids. They also represent a less violent approximation, as just shown.

Substituting for v’ from the third equation (8-1) in the second, and putting

K K

Sk 1K’ (83)
we get q’d—ﬁ = —sin/, ~—gK,u’ = cosf—u'?, (8-4)
giving cos 6?%% —u’zi:; = ?—(Sin g, (8-5)
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so that cosﬂu’f(——ﬁ——u”’“r2 =A4 (8:6)
K+2 ’

where 4 is an arbitrary constant.
Let n be the value of u” at # = 0, when cos = 1; then

K
— K K+2
A=n @A
and we easily deduce the equation
. n?K (u'\* [ n’K u'\7k )
cost = 15(5) (ke 1)(5) (87)
and, since ¢’ = d(cos0)/du’, we get
¢ _ 2K v (_IE__},‘)(”L)“K“‘ :
n“K+2n+K K+2 n?]\n ) (8:8)
The radius of curvature of the path is given by
V_Zy{ 2K K( K 1\ '\ -k-2y-1 "
P=g\kye" K+2_ﬁ)(7{) } ‘ (89)

If we compare these results with those of § 7, we see that we have found extended
phugoids, more general than Lanchester’s. If « is of zero order, whether positive or
negative, «/s'k;,, is large, so that K — 1, and we get Lanchester’s phugoids.

We shall not discuss the extended phugoids in any detail here; they are being studied
with a collaborator. We shall indicate, however, the main forms that they assume under
different conditions.

In normal condition %, is positive. If « is positive, K is positive and less than unity.
If « is negative, and «/s'k;,, is numerically greater than 1, K is positive and greater than
unity. In either case we get cosd in terms of #” analogous to fig. 2, with the nature of
the paths as follows:

(i) n%>(K+2)/K; looping;

(ii) n? = (K42)/K; semicircular;

(iii) 1<n?<(K+2)/K; undulating;

(iv) n? = 1; straight line;

(v) 0<n?<1;undulating.

The paths (iii) and (v) are really the same paths with different starting points.

If k is negative and «/s'k,,, is numerically less than unity, K is negative. Put L = —XK.

When L>2, cosf in terms of #’ is for some of the paths given by fig. 3, and the
nature of the paths is as follows:

(i) 0<n?<(L—2)/L; cusped (analogous to the semicircular phugoid);

(ii) n? = (L—2)/L; semicircular;

(iii) (L—2)/L<n®<1; cusped, or looping;

(iv) n? = 1; cusped, or straight line, or looping;

(v) n2>1; cusped, or looping. \

The paths (iii) and (v) are really the same paths with different starting points.
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The loops in these paths differ from those with K positive in that they are described
with negative rotation: these looped paths are like Lanchester s looping phugoids
but inverted.

There are also paths entirely different in character: for these n does not exist at all.

‘When L<2 we obtain similar results.

The special case K — o0, or k = —s'k,, is interesting. Equations (8-4) now reduce
to d ’
q ¥ —sind, u'?=cosd, (8-10)

and we always get either a straight line, or a semicircular path. The fact that we get,
for this value of K, singular solutions is associated with the range of validity of the
approximation for any value of K.

cosé
(i) @iy (i) 7=
O<n2< 172 LL2 L‘2< Qql r(f[lv:)l__ __________________
1 u'=jn u=m {tn u’,arol
qt| qtfat,
q+
0 i o
__1 ——————————————————————————————————————
Fic. 3

9. (c) « negligible, Ty of order —2 or larger; neutral phugoids. If « is negligible, the
term kw’ in the third equation of motion (3-1) can be discarded in comparison with the
term s'q'. We are thus left with the approximate equation

Id 7.1 !
7L ——rsug, (9:1)

and since, by (4:9), 75’ is of order —1 in normal condition, we get, in general, ¢’ = 0

as a first approximation.
Letw’ be of the first order. Then we get, as a first approximation of the equations (3-1),

,du' . 11 ’ rot /dq 1o
qmz—smﬁ, —q'u' = cosl—u*—k uw, q a0 e (9-2)

Vol. CCXXXVIII. A. 40
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This approximation means

i) X—o0, (i) Z— -pSkLu2(1 +kLw:t—U). (9-3)

Thus we are once more neglecting the drag, and in the lift we are again including the effect
of changes in the w velocity component. But in addition, the moment of inertia is not neglected,
and indeed no assumption is made about the orientation of the machine in the longi-
tudinal plane.

(i) If ¢, or df/dt, is zero initially, then, since (9-1) means d?0/di?ccu’df)/dt, it follows
that dfl/d¢ is zero permanently. This means that the machine has no angular motion at
all, and Gx points in the constant direction 6.

Using (5-1) the first equation (9-2) now gives, approximately,

V., du
Y — i 94
¢ di sin 0, (9-4)
in which 6 is constant, while the second equation becomes
—u'?
P cost—u® (9+5)
u kLw

Since £;,, 1s of order —1 this makes w’ small and of order 1, as postulated. If ¢ is zero,
we get u’ constant, n say, with w’ also constant. The path is thus approximately a
straight line inclined below the horizon by the small angle (1 --#?)/n%,,, and described
with uniform speed 7.

If, in addition to # being zero, we also have n = 1, this line is horizontal ; we get an
analogue of the straight-line phugoid.

If 4 is not zero, we find readily that

uO “V‘ S

Y

p , gsind cosf ( , gsmﬁt), (9-6)

' =u ty kp,w = 5 : —
o, v T up— (gsin0fV_) 1
and the position of the centre of gravity G after time ¢ is given, relative to the initial
axes Gx, Gz, by the displacement

i ) |42 ‘ sin ¢/
x=uyt—3igsinft?, k;,z= _uOH—%g51nt9t2—~—§1cot€loge(l ¢

t), (9-7)

in which #, is the actual velocity along Gx at ¢ = 0, and we proceed only so long as
(gsin 0/uy) t is distinctly less than unity.

For different values of # and «, we get a variety of paths which can be easily plotted ;
we may call them “neutral” phugoids, since they are distinguished by the fact that
the machine is statically neutral. The statically neutral aeroplane is dealt with by
R. Fuchs and L. Hopf (ibid. pp. 235-9), but no explicit general solution is given.

(ii) If df/dtis not zero initially, so that § varies during the motion, (9-2) gives

0

, du, dq’ ’

P oty — 2 ] ’or “9 ’ .
7" 4 sind, q'u’ =cosl—u?—k, uw, 40 s'u’. (9-8)
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The first and third equations (9-8) yield for ¢’ the equation
9 !
q’%—g = 75"sin 0, : (9-9)

which can hold so long as @ is small. This equation is now being investigated. When
¢’ is found, (9-8) give u’ and w’ without any trouble.

SECOND APPROXIMATION
(I) (a) LANCHESTER’S PHUGOIDS: THE LOOP

10. When a first approximation has been obtained, it is a comparatively simple
matter to deduce more accurate results by proceeding to a second approximation,
and then, if necessary, to a third. A second approximation is usually sufficient.

The method is obvious enough. We shall illustrate it by reference to Lanchester S
phug01ds

Let ', w', ¢’ be supposed expanded in powers of y. For Lanchester’s phug01ds §7,

we have u of zero order, w’ of the second order, and ¢’ of zero order. Let us then write

w = ugtyuy+ Y+, w = ywy+ywst..., ¢ =qo+yq -y g+, (10-1)

where ug, uy, ...; Wy, W, ...5 Gos 415 .-, are all quantities of zero order. The notation is
obvious.
Substitute in the equations of motion (3-1); we obtain
du du .
(90+741) ( RN dﬁ‘) —sin 0 —yu, 1
(90+7q1) (—ug—yuy) = cosf — (ug+2yugu,) — y*kp, Uy, (10-2)
dq, = d ,
(90+791) ( 077 jﬁl) —r{k(ug+yuy) (Ywy+y°ws) +5"(uo +yuy) (qo+7'ql)},l

as far as y, since &, kp,, are of order —1, £;, of zero order, and £, negligible: «, 7, s’
have the magnitudes of § 7.
We get, as a first approximation,

dq, d s’
Go—2 dﬁ —sinf, —qyuy = cosf—u}, qoz,%}’ = —(y%1) uO(Kw2+ &éqo) . (10-3).

This gives us the phugoid equations (7-2), with an obvious change in notation, in which

u, represents the zero-order quantity «’, g, the zero-order quantity ¢’, and w, the

second-order quantity w’. ‘
The second approximation gives

9o ‘f;;l + 1{;? —udy, = oty — gyt = — 2ty — (Ykp,) ugwy,

, (104)

%o jﬁl+41 ‘Z?o - (727){K(”0w3+”1w2)+772(”091+u1%) :

These equations enable us to find u,, ¢,, w;.
40-2
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In the second approximation we are using

() X=—pSkyu2, (i) Zz—pSkLu2(1 +kLw%), (10-5)

so that the drag is included to the first order in y; the effect of the w component of velocity is
taken into account in the lift; and no assumption s made about the moment of inertia, except
that involved in 7, being taken of order —2, or larger, and this is generally true for
a conventional aeroplane. Hence the second approximation gives a reasonably accurate
description of the motion.

This second approximation (without and with screw thrust) has been successfully
investigated by Dr G. S. Atkinson of Leeds University, now at the Northampton
Polytechnic, London, and the results obtained give interesting information about
looping motion, with considerable accuracy. It is hoped to publish the results in the
near future. They possess the advantage over the method of step-by-step integration,
that the results are not merely numerical, for given numerical data, but are general
in terms of functions involving the initial conditions.

Higher approximations are possible in the same way, and, of course, the method can
be applied to any first approximation solution. :

(II) STANDARD DIVING CONDITION: DIVING PHUGOIDS

11. In the standard diving condition of the machine y is }#, s’ is the reciprocal of
several hundreds; cosyk, is a number like 80 or 100, cosyk,, like 15 or 20, while
kp, and kp, can be ignored. The equations (3:1) now become

q’(% + w’) = —sinf—u'?,

q’(%% — u') = coslf —u'w'—cosyk,, u'w —cosyk,, s'u'q, (11-1)

d’ ’ ’ ’ !
q’ég—z—m (kw'+5'q").

We know that ¢'=(V_,/g) ¢, and now V_ /g is a rather large number, like 15 or 20,
for any conventional acroplane. If we use g/V_., as defining first-order smallness, the value
of 7, can be assumed to be of order —3 and s’ of order 2.

In practice, we can assume « to be fairly small (whether positive or negative); we
therefore define a problem, to which the method of approximation can be applied, as
follows:

Let 6 be so small that ¢’ is of zero order. The third equation (11-1) gives

Kkw'4s'q = —_— 4" 5 (11-2)
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GENERAL MOTION OF THE AEROPLANE 325

The right-hand side of (11-2) is of the third order; hence xw’ must be of the second order
(since s'q" is of the second order). If then « is rather small and of order (g/V_.)}, w’
is of order (g/V_,)!. The number cosyk,,, which is like 80 or 100, is of order (g/V_,) %,
and so the equations (11-1) become, as a first approximation,

’ ’

¢ =5 =—sinl—u'?, —q'u’ =cosf—(cosyk,,)uw, w = —~S—q’. (11-3)
v K
In these “diving” phugoids, the air-thrust components are

() X =—pSkpu?, (i) Z——pSk,u? (kLwa), (11-4)

so that the first approximation is comparatively close to reality, the only assumption being what
Lanchester calls neglecting the moment of inertia.
Using w’ from the third equation (11-3) in the second, the system reduces to

’

,du . ’ S, ’r
7= —sinf—u'?, —(1 +EcosykL_w)q u'-= cos b, (11-5)

which, on eliminating ¢’, give

du’ ! .
cos 67% = (1 +%cosykLw)u’(31n.¢9+u’2). (11-6)
We must note one exception, viz. K = —s'cosyk;,, when the second equation
(11-5) gives cosf = 0. Using 6 = —4im, the first equation (11-5) means, since

¢djds = (V. /@) djd, , 2
u U
=gll—=), (11+7)
a—e(1-72)

which is of course ““parachute” diving motion with V_,, as terminal velocity. We have
again a singular solution (see remark to equations (8-10)).

If we write, as in (8-3),
K _ K
s'cosyky, 1—K

s (11-8)

equation (11-6) transforms into

Kdj/1 sin f
5‘@(&72)(:036‘1— 772- :‘—l,

. v d (sec?K( 2

1.€. — (-——1_2__) —_— Sec2/K+1 6,
do\ u K

which, on integration, gives

2/K
%ng—%fsec2/K+lada, (11-9)
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where A4 is an arbitrary constant. K = oo, the exceptional case already mentioned,
can be deduced as the limit obtained when in (11-9) we make K tend to co.
As an illustration take the case K = 2 so that « = —2s" cosy k,,,. Write tand, for 4,

and equation (11-9) becomes
;9 cosl, )
~ sin (0,—0)’ (11-10)

where 6, is an arbitrary angle. We also get by the second equation (11-5) that

q,:_Qc;,sﬂ. (11-11)

(M

Fic. 4

Further, we get for the radius of curvature

17z, cosf,

F=79"¢ cosOsin (0,—0)

(11-12)

If we plot u’ against 0, as in fig. 4 (i), where %’ is the radius vector measured from the
pole O, and ¢ is measured from the original line § = 0, then we get the hodograph,
drawn for the case 0, between 0 and i7.

The part of the hodograph from 6 = 6, till § = — {7 gives a path like that in fig. 4 (ii).

The part of the hodograph from # = —}n till § = f,—n gives a path as shown in
fig. 4 (iii).

When 6, is between {7 and 7, or negative, we readily get similar results; the path is
always like fig. 4 (ii) or (iii).
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ELEVATOR IN ROTATION DURING MOTION
FLATTENING OUT FROM A DIVE

12. The problem of the dive raises another question of great importance, namely,
the process of flattening out from a dive by the use of the elevator. We have here the
problem of the motion of an aeroplane with elevator in rotation. This problem can
also be dealt with by the method of this paper.

When the elevator is rotated slowly by the pilot during the motion, the effect is that
the ““condition” of the machine is being changed. Ignoring lag in the effectiveness
of the elevator, we can say that, for any instantaneous position of the elevator, there
are instantaneous positions of the directions L = 0, M = 0 in the longitudinal plane,
and this gives an instantaneous value of the incidence i_,, for the steady glide appro-
priate to the position of the elevator. We therefore get instantaneous values of y, V.,
8's Ky A5 Ty ks Kpus kg5 kpgs all of which vary, in general, with i_,

Since the axis Gx, which we take to be along the direction M = 0, changes in the
machine as the elevator is turned, the inclination # of this axis to the horizontal no
longer represents the direction of the body of the machine relative to the air. Let us
then take some axis through G fixed in the machine, e.g. in order to illustrate the
method roughly, let us neglect the slight change, due to the moving elevator, in the
direction of zero lift from which we measure 7. Then the orientation of the machine
can be represented by f+:_, and its angular velocity by d(t9+z ,)/dt. We shall,
for algebraic convenience, contmue to use the symbols ¢ for 0, and q' for (V.. /g) g,
although, of course, ¢ is no longer the angular velocity of the machine; it will be
convenient to use also V.,d

—r0+i) =g (12:1)

Since u=uV_, w=wV_,,
du A AV di,  dw Jaw' AV di_,
PR R i R
If  represents the angle that the elevator makes with some standard position, measured
positive in the sense z—x, we can write

we find (12-2)

di_, di_,dy
R e ) 12-3
so that dt ~ dy di (12-3)
du [ du d (V. \di_ dl]} dw { dw'’ d (K )a’i_ dy
U 12 ki A S 74 e A )
dt { do + di_, ( ) dp dt)’ dt — 8\ i +u’ di_. dny dlf} . (12+4)

Hence the first two equations (3-1) become
du’ V_\di_,d
q'(d—Z; )-{—u G ( )E}-Zg— —sinf—siny(u'?+kp,u'w +kp,s'u'q") +-cos yu'w’, l
d d V_\di_,d
(dlz )-I—w g ( ) :1 dz—cosﬁ cos y(u'2+kp,u'w +k; s'u'q") —sinyu'w’. ‘
(12-5)
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With regard to the third equation (3-1), we must go back to the third of the primitive
equations (2-2), and rewrite it in the form

d2

Bd—tz(6+i_7) = M. (12-6)
dd ) d{ g ”) ( g )2{ dg" d (V_y) di_ydﬂ}
Now G0 +i-) 22.17:(7/;-‘1 ) Cw N ey w127
Hence the third equation (3-1) is replaced by
/dq” ” d (17—’}’) dz—yd” ’ ’ ’

g 4 ZI{:; v —d{‘%_—m (kw'+5'q"). (12-8)

In equations (12-5) and (12-8), 7, V_,, k, 4, 7, §', etc., are all functions of :_, ; and also
by (12-1) we have V o di d

v gy Ly By W .
qﬁg—I—g & di (12-9)

The variations of y, V_,, «, etc., are complicated, but they present no insuperable
difficulty, especially if the angle through which the elevator is turned does not involve
large changes in¢_,. If this is the case, it is also fairly safe to make di_, /dy a constant.

Finally we have to consider dy/dt. If the elevator is turned at a constant rate there is

no difficulty. If not, we can use d g dy (1210)
v, dp’
and any assumed relation between 5 and ¢ will, when the problem is solved, become
some relation between 7 and ¢.

This method has been used successfully by Mr J. Seddon of Leeds University to
deal with the flattening out from a dive. Results of considerable interest have been
obtained, agreeing with observed facts. It is hoped to publish them soon.

LANCHESTER’S PHUGOIDS CORRECTED FOR DRAG

13. The neglect of the drag in the phugoids produces the bizarre effect that we
can have a horizontal path, or that, in general, the machine continually rises to the
same level, although there is no engine to supply the energy dissipated by the air
resistance. It is for some purposes (e.g. in dealing with the flattening out from a dive)
useful to correct Lanchester’s phugoids for the drag, not a complete second approxima-
tion, but better than the first.

Let us take equations (3-1) once again. Asin §7, taking standard normal condition,
with « of zero order, and using the orders of 7y, etc., there assumed, the third equation
makes w” a second order quantity in terms of siny. But let us now write the first two
equations correct to the first order in siny. We get

,du’
740

= —sinf—sinyu'?2, —q'u’ = cosf—cosyu'?; (13-1)
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GENERAL MOTION OF THE AEROPLANE 329

We retain the form cosy (instead of using 1) in the second equation for reasons of
mathematical symmetry.

Equations (13-1) define ‘““corrected” Lanchester phugoids. They can be derived
also for the standard stalled condition if we assume « to be fairly large, as is usually
the case in this condition. They apply to all conditions of the machine with y not too
large, and & not too small, so that w’ is of the second order.

Fic. 5

Eliminating ¢’ between the two equations (13-1), we get

(cosf—cosyu'?) dw

= u'(sinf+sinyu'?), (13-2)

an obvious extension of (7-4). The radius of curvature is

2 12
V_y u

g cosyu'?—cosf’

p= (13-3)

The equation (13-2) can be readily dealt with if siny — 0, when we obtain the
Lanchester phugoids in the standard normal condition, or if siny — 1 (which can be
shown to be applicable to the first approximation in the case of a parachute under
suitable conditions). In general, however, when y is neither small nor nearly 7 a
simple integration process does not exist for this equation.

But consider the hodographs defined by the differential equation (13- 2) In fig. 5
we have u' as radius vector, measured from the pole 0O, and # measured from the
original line § = 0.

Vol. CCXXXVIII. A. 41
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If ¢ is the angle between the radius vector, in the positive sense, and the direction
of the tangent, in the sense of # increasing, we have

cosf—cosyu'?

tang = —— 1,
¢ sinf+sinyu'?

(13-4)

Plot the curves: I, 4’2 = cosf/cosy; 11, u'> = —sinf/siny. I (dotted) is the locus of
points on the family of hodographs represented by (13-2) at which the tangents pass
through the pole O; II (dashed) is the locus of points at which the tangents are
perpendicular to the radius vector from 0. The two curves I, IT cut at the point P,

whose co-ordinates are W=1, 0=-—y.

The point P, by itself, is the hodograph of the steady glide with gliding angle y;
this is the corrected form of Lanchester’s straight line phugoid. The point Pis a singular
point in the system of curves represented by the differential equation (13-2).

From (13-4) it follows that tan ¢ is positive and negative, respectively, as indicated
in the spaces in fig. 5, and an examination of the diagram shows that P is the pole of
a family of spirals, each of which surrounds P, while it comes in closer and closer to P,
reaching it after an infinite number of revolutions. Further, from (13-1) we see that
the sign of ¢’ is the same as the sign of cosy 4’2 —cos §, since «’ is always positive; hence
¢’ is positive outside I and negative inside I.

Mathematically speaking, each hodograph (a) in fig. 5, commencing with some
large value of u’, goes round the pole O a number of times, and then falls short of O,
and describes a spiral inwards round P. Hence each path consists of a number of
loops, followed by a number of undulations of diminishing angular amplitude. In fact
the corrected phugoid partakes of the character of both loops and undulations, the
undulations consisting of a closer and closer approximation to the steady glide in the
direction y. Whether loops will appear or not, in fact, depends on whether the initial
point is taken before or after the last loop in the path.

There is one exceptional hodograph, (4) in fig. 5, which passes through the pole O.
It clearly does so tangentially to the direction # = -+ }n, and then curls in towards P.
This particular hodograph gives a path, which, after describing loops, describes its
last loop (or its first undulation) in the degenerate form of a cusp which points
vertically upwards; after this it undulates with diminishing angular amplitude, and
approximates more and more closely to the steady glide # = —y. As in Lanchester’s
semicircular phugoid, the cusp bears little relation to the truth, since the approxima-
tion involves that " never becomes zero, which it does at a cusp.

We have a descriptive account of the corrected phugoids. More definite results
have been obtained by Mr C. P. O’Dowd of Leeds University, who has dealt also
with engines in action. _

It is easily proved that if in normal condition « is of the first order and 7 of order — 3,
we get a factor 1/K on the left-hand side of the second equation (13-1), where K is
as defined by (8-3). The consequent modifications in the results are obvious.
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II. LONGITUDINAL MOTION WITH ENGINES IN ACTION
EQUATIONS OF MOTION: FIRST APPROXIMATION

14. We now proceed to the motion of an aeroplane with engines in action. The aero-
plane is still taken to be symmetrical, and the motion to be in the plane of symmetry
or longitudinal plane, which is supposed to be fixed and vertical (relative to the air).
For simplicity we shall suppose (fig. 6) that the resultant screw thrust is 7" and acts
through the centre of gravity G. Let the x axis make an angle § with the direction
of T, Gx being as before that direction in the machine, motion along which, without
rotation, gives no moment due to air resistance, the tail plane and elevator being in
given and fixed positions. It is not difficult to deal with the more general case where
T does not pass through G, but in that case we must take into account the moment due
to 7. We shall ignore the effects of 7 on the directions L = 0, M = 0; they are quite
small.

Fic. 6

For any given position of the elevator and a given adjustment of the engines, there
is an appropriate steady motion. Let it be a steady climb at angle 0, with velocity
V,» Then in this steady motion

u="V,, w=0, 0=40, q=0, T=T,,
with the conditions of steady motion
0 = —mgsinby+ X, +Tj, cosf, 0=mgcosty+2Z, —Tpsinf, 0=~M,. (14:1)
If y is the gliding angle for the given condition of the machine, then, ignoring
viscosity, elasticity, and the effect of 7" on the air resistance forces we have

Xf?y, — ,ZQQ, — (Vﬂo )2

41-2
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and the conditions for steady motion give

Vi \?_cos(B+0,) .. sin(y+,) |
") =508 Tl ez

For the screw thrust let us assume that, during the flight, the numbers of revolutions
and the engine torques are constant; then 7" is, in accordance with Bairstow’s theory,
a function of the velocity component along the direction of 7. This gives

Y

o . 0,)
T=T, (Z@w)zm sin (7 +6, ( Y tan ) 14-3
0of Veo COS/? gCOS (V“ﬁ) f %0 Vt;o /é) ) ( )
where /is some functional form such that f{1) = 1.
Writing
V % u w vV sg
=V, =V, —=u, —=uw, “lg=¢, ==v,
V., V., V., V., g Ve,

the equations of motion (2-10) with the screw-thrust included are

[ *al7 55) k(“i ") ~

g (a’u tw ) —smb’—sm)/V’2 -l:—l-/,—-_*wilcot L VeV

SIn()/‘l"a)COSﬁ w’ )

+ CcOS ('y ﬂ) f(Veg Veo tanf

‘ wosq w ‘_Z) .
(dw u,) — cosf— cos V,Z;E()-:tan kD(V/) V')+ul kL(V/) 7 l (14 4)

do - b4 v Y A (0 0) 7T (O O) J

Sln (7+l9 )Slnﬂ ( w' )

cos (y—p) S vV tan ff

Ae 'q" dw’ w' s'q

I G ==y ALY Fhanl s )]
It is safe to assume that 7 is not radically affected by the state of the engines, so that

Ty, Tp and 74 can be taken to be of the orders of magnitude already used above. Using

equations (14-4) with the approximations of § 3 we get, instead of (3-1), the approximate
equations

1 ((f;t; Tw ) _Sinﬁ—SinV(uIQ‘Fkau’w'—FquSI u'q’)
’or Sin(y'i_ﬁo)COSﬂ{ (L)_}’Eﬁ_ ,_u:_
+COS'}’U w' -+ Ccos (’}/—ﬂ) f Véo V(;O tanlb’f (Véo)}’
’ dw’ /> , ., o
(g ) = cos 0 —cosy kit s (14:5)

sin (y+6p)sinf| (u'\ w ,(_u’_
costrd 07 )
q'%% = —1u'(kw'+5'q").

—sinyu'w' —

’
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The quantities £;,,, kp,» £1,, kp, do depend somewhat on 6, but it is safe to ignore
this circumstance in dealing with approximate solutions of the equations of motion
based upon comparison of orders of magnitude.

(I) STANDARD NORMAL CONDITION: MODERATE AND LARGE POWER

15. We again use siny as the first-order small quantity, and, as in § 6, we take s’
to be of the second order; £, kp, of order —1; k;, of order zero, and £, negligible.
In the standard normal condition £ is very small. Two divisions occur in the treatment:

(IA) Moderate engine power, so that 6, is small;

(IB) Large engine power, so that ¢, is considerable, of course positive.

In each we consider the three subtypes (), (5), (¢) of § 6.

(IA) MODERATE POWER: LANCHESTER’S, EXTENDED AND NEUTRAL PHUGOIDS

16. (a) k of zero order, Ty of order —2, or larger; Lanchester’s phugoids. Assume g small,
so that ¢’ is of zero order. The third equation (14-5) again makes w’ a second-order
quantity. If now we write the first two equations (14-5) with small quantities omitted,
we get, as a first approximation,

d 8, 1 df

___' _ll: _y'2 — . ot
7= sin 4, qg'u' =cost—u?, w p ik R B

(16-1)

identical with equations (7-2), and we get again Lanchester’s phugoids.

This apparently paradoxical result is quite intelligible. The action of the screw
makes no difference to the first approximation, because when 6§, is small the screw
thrust itself supplies only a first-order quantity in the equations of motion, being only
a small fraction of mg. Itis thusseen thatin Lanchester’s phugoids there is no question
of the screw thrust just balancing the drag at each instant; it is the smallness of the
drag and the screw thrust separately, compared to the lift and weight, that makes
Lanchester’s approximation possible. It is best when 6,=0.

(b) & small, of the first order, Ty of order — 3, or larger. We get the same results as in § 8,
the extended phugoids.

(¢) « negligible, Ty of order —2, or larger. We get the same results as in § 9, the neutral
phugoids.

(IB) LARGE POWER: POWER PHUGOIDS: ZOOMING

17. (a) & of zero order, T, of order —2, or larger; Lanchester power phugoids. Using the fact
that w’ is a second-order quantity, as given by the third equation (14-5), the first two
equations of (14+5) now become, as a first approximation,

!
,du

q %=—sin¢9+sin00f(—g7), —q'u’ = cosf—u'2 (17-1)
o
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The first of the equations (17-1) differs from the first of equations (7-2) in the fact
that the former contains a term involving f, due to the engines.
Eliminating ¢’ between the two equations (17-1) we get

du'  Ldu ;. a4
cosﬁﬁ*—u = sinf u ~s1n00uf(1770),
Ldu' sinf—sind, f(u'|V,) .
o udi cosf—u?  ° (17:2)

We no longer have the Lanchester phugoids. The paths defined by (17-2) are in
a sense corrected phugoids, but the correction made here is that account is taken of
the considerable air-screw thrust due to 0, not being small. We can therefore appro-
priately describe them as ““power”’ phugoids.

The actual paths of the power phugoids depend, of course, on the nature of the
function f. It can be readily seen, by considering the hodographs, that the path
consists, in general, of loops followed by undulations of diminishing angular amplitude,
tending toward the rectilinear steady motion u’ = V, 0 = 4,

Lanchester’s straight line becomes the rectilinear steady motion «" = V , 6 = 0,.

(b) & of the first order, Ty of order — 3, or larger; extended power phugoids. The equations
(14-5) become, with 6, considerable,

’ u, .
a5~

w’ being again, as in § 8, of the first order in siny.
Using the third equation in the second, we get

’

—sinﬁ—{—sinﬁof(—;—,), -q’u; =cosf—u?—k,  uw, w = —i—q’, (17-3)
0o

’

,du . . u s’ 1,1 ’
7 =—sm¢9—|—sml90f(7éo), —(1 +;k1,w)9” = cosf—u'?, (17-4)

so that, defining K as in (8-3), we have the relation between «’ and ¢

Kdu sinf—sind, f(«'|V,)
u di cos f —u'? ’

(17-5)

which can be discussed graphically, or numerially, for any given form /. This has been
worked out by Mr O’Dowd, using the form of f given in (17-8) with ¢=2.

(¢) & negligible, 7 of order —2, or larger; neutral power phugoids; zooming. Asin §9, we
can take w’ to be of the first order, and write the third equation (14-5) in the same form
as (9-1). The equations (14-5) give in fact
= —sin #+sin ﬂof(;.—ﬁ,) , —qu =cosl—u?—k, uw, q aq_ —15'u'q’;

.
(17-6)

’

7 0

and the nature of the approximation is the same as in §9. Once again ¢’ = 0 is a first
approximation.
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(i) If df/dt is zero initially, then it is zero permanently, so that the machine does
not turn, and Gx points in the constant direction 6.
Using (5-1), the first two equations (17-6) give approximately

%5‘% _ —~sin¢9+sin00f(%)a

Remembering that ¢ is constant, the first equation can be satisfied by taking u’
constant, say 7, so chosen that f(n/V; ) = sinf/sinf,. Then w’ is also constant, and
the path is approximately a straight line inclined below ¢ by the small angle
(cos 0 —n?) [n%k,,,, and described with uniform speed .

If 0 = 0,, then f(n/V} ) = 1,and n = V. It follows from (14-2) that, approximately,
n = /(cosb,), so that the machine climbs in the direction f, with constant speed given by
u' = /(cost,).

If «’ is not constant, the “neutral power” phugoids then obtained will depend on
the exact form of the function f.

There is reason to believe that f(u’/V; ) can be written in the form

L+v—v(u'[Vy,)7, (17-8)

where v, ¢ are positive constants. Then «’ satisfies the equation

, cosf—u'?

=S (17-7)

1 inf,—sinf}—vsind “yY 17-9
Tg_Tt_{( +v)sinf,—sinf} —vsin O(V—éo) . (17-9)
If 0 <sin~! (1+v)sinf,, we have a terminal value of »’ given by
;o (1+vsing;—sin G\ '
W = V(,O( T ) : (17-10)

and we get, terminally, the straight-line motion just described. This motion can be
described as ““‘zooming”, since 0, is large and positive.

If §>sin~! (14-»)sind,, the machine loses speed continually, and the straight-line
terminal motion is not possible.

The motion with %’ not constant is, in general, rather complicated. With values of ¢
like 1 or 2, the motion can be calculated out, if required, without excessive trouble.

(i1) If df/dt is not zero initially, so that it is not zero permanently, we readily find
for ¢’ the equation

’

2 » ’
¢ = Ts’{sint9—~sin 0, f(—-‘fj% /n' V{%)}, (17:11)

an obvious extension of (9-9).

III. THREE DIMENSIONAL MOTION

SYMMETRICAL AEROPLANE

EQUATIONS OF MOTION: FIRST APPROXIMATION

18. Perhaps the most interesting applications of the method of this paper are to the
study of approximate solutions of the three-dimensional general motion of an aeroplane.
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336 S. BRODETSKY ON THE

We shall take here a glider, or an aeroplane with no screw thrust; the results can
be extended to deal with engines in action.

We shall begin with the machine symmetrical, i.e. the rudder and ailerons in
neutral positions.

We use the axes Gx, Gz as already defined, and add Gy perpendicular to both, its
positive sense being to the right when looking along Gx, so that we have a right-handed
set of axes.

Let u, v, w be the components of velocity of G along these axes, and p, ¢, 7 the com-
ponents of angular velocity of the machine about any instantaneous position of the
axes. If y, 0, ¢ are the usual Eulerian angles appropriate to this problem, namely
the angles of yaw, pitch and roll respectively, then we have

p=¢—sinfy, q—=cosgf+tcosOsingyy, r—=—singf+cosfcosgyf. (18-1)

Let 4, k,, 5 be the components of angular momentum about the axes, and 4, B, C,
D, E, F the usual moments and products of inertia. Then D = 0, F' = 0, and we have

hy = Ap—FEr, hy= Bq, hs= Cr—Ep. (18-2)

Using X, Y, Z; L, M, N, for the components of force and moment due to the air
resistances, the equations of motion are

m(t—rv+qw) = —mgsin -+ X,
m(0—pw—+ru) = mgcosfsing+ Y,
m(w—qu+pv) = mgcosﬂcosgﬁ—l—Z;&

hy—rhy+ghy = L,
ilz_ﬁhs‘f‘r/ﬁ = M,

hy—qh,+phy, = N.

(18-3)

We now use 0 or ¢ or § as a new independent variable instead of the time, the choice
being dictated by convenience, as we shall soon see. In the longitudinal motion, of
course, there was no other choice than 6.

If we choose & as the new independent variable instead of the time, let us write

. p=0P, ¢g=0Q, r=0R, (18-4)
so that
d . ., d . d
P:d_g—smﬁc—z’g’ Q=00s¢—l—cosﬁsm¢d—g, R:—51n¢+cosﬁcos¢—£g. (18-5)
Introduce the notation
V u v w V., . sg
=V, =, =, =, =g, pao=s, (180)
V., ., V., v, 4 vz,

where V_,, is the longitudinal gliding velocity of the machine in its given condition,
y the gliding angle.
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GENERAL MOTION OF THE AEROPLANE 337
The equations of motion (18-3) now become

q (a’u —Rv' + Qu’ ) = —sin 0+ X/mg,

do
q(‘f;; Pw’ +Ru)~—cosﬁsin¢—|—Y/mg,
dw’ ‘
( —Qu'’ —}—Pv)—cosﬁcong—Z/mg;

C 174 (18:7)

it et on ) 4
d c—-4 E___ M/V \2
¢ A Qg R PR = ()

AR EP\ (A o Eor) = Y (Y

o aalt (R=cP)| + a2~ Pe o) = o)
By the theory of dimensions, and ignoring viscosity and elasticity, we can assume

that X/pV2s, Y[pV2S, Z|pV2S; L[pV3Ss, M/[pV?Ss, N/pV2Ss,

where we again take the semi-span s as the characteristic length defining the size of the

machine, are functions of the dimensionless arguments

v o w sp sq 1

400 O A A 7
or -I”/—,, —Vui SV‘-’,P 70, SVf-’,R (18-8)
where v, w’, ¢', s’ are defined by (18:6), and P, Q, R by (18-5).

Let us, in order to get a first approximation, assume that these arguments are
small. Since the machine is assumed symmetrical about the longitudinal plane,
X=X ,2=2_, while Y, L, M, N are zero, in the steady glide. It will be convenient
to use altogether Jones’s notation (p. 133); after a little manipulation, the equations

of motion (18-7) become

q (a’u —Rv' + Qu’ ) = —sinf—sinyu? — (z u'w +kq s’u’q’Q)

df
dv — . yv 11 yp / f ’ ]ZL 1ot
q(—gg—Pw +Ru) cos fsin ¢ (k u'v +k _qP—}—/C suqR)

(a’w Qu' 4 Pv’ ) = cosﬁcosgzﬂ—cosyu’z—(kl’u'w’+/;!l s'u'q'Q);
R R

,d |, E wof B—C E _ N A A

ol (P R)| o= QR GPQ) = el b Py R,

! d 4 4 C—-4 Evs— My 1 10

qd—ﬁ{q Q} +9’2(*—E—RP+BP2 Rz) (muw —I—squ),

d E 19 A B e’ p 1w r ’
q dﬂ{q (R——C,P)}—!-q (———~——PQ+CQR) (m + s'u'q’' P+- qsu qR),
(18-9)

Vol. CCXXXVIII. A. 42
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338 S. BRODETSKY ON THE

using the definition of 7 in (4-7). As in § 3, the values of Xy Zg used by Jones must be
multiplied by ¢/s, and m,, by s/c¢; all the other symbols remain unchanged.

In two-dimensional motion Q = 1, v’ = P = R = ¢ = = 0; cf. (3-3) using « from
(45).

If we take ¢ as the independent variable, we write

p=9¢P, q=4Q, r=4¢R, (1810
so that
_ @ @ p sV W
P= 1——sm¢9d¢, Q= (:osgzia,¢4}—cosﬂsmg25d¢ R = sm¢d¢+cosﬁcos¢d¢. (18-11)
We now use the notation -—1¢5 =/, (18-12)

and instead of (18-9) we have the equations of motion

pt| % - N 8 9 _xw, Ky
[)(d¢ Rv—l—Qw)— sinf —sin y u (/c w4ksupQ)

R

’ dvl ’ ’ : L y[) 1ot gt NV
])(-a—,a——Pw +Ru):cosﬂsln¢ ( u'v +k SuIJP+k;SUPR),
, dw’ ’ Z ’,r
p(—~—Qu +Pv)—cos(9cos¢——cosyu (—wuw +ﬂsu[) Q)
d kg

a5 an )iy )
NI p'?(—%RP—F sz Re) = o w’+s’u’p'Q),
e R R

(/

(18-13)

There is no harm done in using the same letters P, @, R for the definitions (18-5)

and for the definitions (18-11), as it is clear that (18-5) must be used when @ is the

independent variable, and (18-11) must be used when ¢ is the independent variable.

We now turn to ¥ as independent variable, and we have a third set of definitions for

P,Q,R

If we take ¥ as the independent variable, we write

p=yP, ¢=9Q, r=yR, (18-14)
so that

dg :
P = i —sin 0, Q—cos¢d¢+cosﬁsm¢, R———s1n¢d—¢~+cosﬁcos¢. (18-15)

We use the notation é" v =r, (18:16)
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GENERAL MOTION OF THE AEROPLANE 339

and instead of (18-9), (18-13) we have the equations of motion

PNy S 2 (Fw, 0 &Lr/,)

(‘M —Rv —I—Qw) sinf—sinyu (kRuw—l—kRsur ) ]
,dU,P, R/_ 6’ yy /r/P jrr//R

r(w— w' + u)—cos sin ¢ (k—«uv +k su'r +~];—sur ),

pE ] — . rz_gwr/ _Z‘/rr .
(‘M Qu’ ka) cosfcosgp—cosyu (kRuw —l—kisurQ),

d E B—-C E l l l
R - rof ¥ _ — R APE WA N W
r d¢{r(P AR):—I—r ( Y QR APQ) T(mquv —{—mqsurP qusurR),
’ d ' 19 C A E 2 P2} mw ror 10
rw{r Qy  Fr (—va—-—RP—|—BP R)— (mq u'w —!—surQ),
d E A—B E n, n
R Y _ rof T 77 - ——7 1,0 Do 10 Tt
r ‘M{r (R CP)}—H ( 8 PQ—I—CQR) (mquv +mqsurP+mqsurR).

(18-17)

The sets of equations of motion (18-9), (18:13) and (18-17) are really equivalent to
one another. It is useful to note how 7 occurs in all the equations for the angular
momentum.

(I) STANDARD NORMAL CONDITION: THREE SUBTYPES

19. If the aeroplane is in standard normal condition, we use once again siny as
the standard of smallness, and distinguish the cases in accordance with the value of «
or m,,/m,, as in § 6.

Let us assume v’, w’ small, and the rotation of the machine to be small, so that p’, ¢’, 7’
are all of zero order. This means that if we use ¢ as independent variable, with the
equations of motion (18-9) then ¢’ is of zero order, and the corresponding P, @, R of
(18:5) are never large; if we use ¢ in (18-13), then p’ is of zero order, and P, @, R of
(18:-11) are never large; and if we use ¢ in (18-17), then 7’ is of zero order and P, @, R
of (18-15) are never large. We shall take s’ to be of the second order.

20. (a) k of zero order; Ty of order —2, or larger; three-dimensional phugoids. Immelmann
turn. Let us use 0 as independent variable in equations of motion (18-9).

The fifth equation gives at once that w’ is of the second order. Noting that x,, y,, ¥,
are usually negligible; and taking into account the fact that usually, for normal con-
dition, x,/kg, y,/kg are of zero order, while z,/ky, z /ky are of order —1; then since v’
is small, while w’ is of the second order, we at once deduce that the first three equations
of (18-9) give

q % — —sinf, ¢'Ru’ =cosfsing, —q'Qu = coslcos¢d—u'2. (20-1)

42-2
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340 S. BRODETSKY ON THE
To the order of our first approximation, we are in (18-3) putting
i) X=0, (i) Y=0, (i) Z=—pSk u’ (20-2)

Thus (i) we neglect the drag. (If the air screws arein action and the thrustis small compared
to the weight, we also neglect the thrust, and get the same result—as happened in the
longitudinal problem.) Also

(i) we neglect the effect of the side-slip on the air resistance; and

(iii) we assume ““ constant incidence”, neglecting the effect on the lift of changes in the w velocity
component.

Finally, we assume that the machine adjusts itself in the Lanchester manner about each of
the three axes. This is perhaps more difficult to imagine in lateral than in longitudinal
motion, but as basis for a first approximation has the same validity in both.

The fourth and sixth equations of (18-9) give that

Lo +1,5qP+1s'qgR = O,}

(20-3)
and nv' +n,s'qPtns'qR =0,

to the first order. Now it is a well-known fact that, of the six rotary derivatives con-
tained in (20-3), /, stands out as predominantly large. In fact/, is a quantity of order
— 1, while of the other five derivations only /, is at all large, namely, like 2. We therefore
suggest that, in our first approximation, we can take P = 0.

This suggestion is much nearer the truth than appears on the surface at first. For
if we take the typical values of the rotary derivatives we find that by adding four or
five times the second equation (20-3) to the first (20-3) we get P = 0 with considerable
accuracy.

We therefore obtain the following equations for the first approximation:

(I’% =—sinf, ¢'Ru’ =coslsing, —q'Qu’ =cosfcosp—u"?, P=0; (20-4)

where ¢ =WV,/g) 6,

4

and P = d—gé——sinﬁd—l/f Q= cos¢+cosb’sin¢%, R = —~sin¢+cost9cos¢§—0.

do do’

If we start off with the equations of motion (18-13) using ¢ as independent variable,

and argue in the same way as we have just done with the equations of motion (18-9),
we find the first approximation:

/7'%'1" =—sinf, p'Ru’=cosfsing, —p'Qu =cosfcos¢g—u P=0; (20-5)

where =000

N . dy B di .y Y/ dyr
and P—l-—smﬁ%, Qﬁcos¢d¢+cosﬁs1n¢2§;, R—~51n¢@+cosﬂcos¢g$,
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GENERAL MOTION OF THE AEROPLANE 341

If we start off with the equations of motion (18-17) using ¥ as independent variable,
we get the first approximation:
! d ! : 4 ! b ’ ’ ’
r ﬁ = —sinf, r"Ru’ =coslsing, —r'Qu =cosfcosp—u'2, P=0; (20-6)

‘ where r=(V_,/g) v,

and P= a'f; sinf, @ = cos¢§§~,+cos6'sin¢, R = ——sin¢j%+cosﬁcos¢.

It is obvious that the three sets (20-4), (20-5) and (20-6) are identical equations. We
have here indicated all three ways of deducing the same result in order to make our
process clear.

The equations just obtained, in any of the three forms, define three-dimensional
phugoids, extensions into three dimensions of the Lanchester phugoids (7-2), which
are the special case in which the motion is longitudinal.

It is quite easy to solve the equations of the three-dimensional phugoids. Let us
(since, as will be seen, the rotation ¥ in a constant sense is a feature of the motion)
use ¥ as the independent variable; the equations (20-6) give

r’% = —sind, r’u'( —sin¢g;—(z+cos f cos ¢) = cosfsin ¢,
(20-7)
r’u’(cos ¢ j—;Jr cos f/sin ¢) = u'?2—cosfcos ¢, %} =sind.
The first and second equations (20-7) give
cos 0 sin ¢Z—§ZI—— ' sin 0sin ¢ %%—1—u’ sinf cosfcos¢ = 0; (20-8)
and if we write dp/dy for sin 0 in the last term in (20-8) we get
cos fsin gzﬁ%%—u' sin f'sin ¢§%+u’ cosf cos ¢§§ =0
so that we deduce at once the important result |
u' coslfsing = a, (20-9)

where « is an arbitrary constant. We get from the second and third equations of
(20-7) that

' cosf = u'sin g, (20-10)
_7 B a
so that we deduce ;ﬁ = costl (20-11)

We also find from the first, second and third equations (20-7) that

!

cosﬁu usmﬁdﬂ u'?

&y &y

cos ¢,

a’clf
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342 S. BRODETSKY ON THE
. d ., ,
i.e. —— (4 cos @) = u'2cos ¢, (20-12)
du
. ) o _ J(u*cos? 0 —a?)
while, by (20-9), sing = o5’ cos ¢ = 7 cos
Equation (20-12) becomes
d ,, e/ (Wcos?0—a?)
T (u' cost)=u o cos 0 ,
which gives J(@'?cos? 0 —a?) = tu'3+4 A,
or u'2cos? = a?+ (Lu'*+ A)?, (20-13)

where 4 is an arbitrary constant, analogous to 4 in (7-5) for Lanchester’s phugoids.
Thus we have the results

' ing — ' — 13 S A :
u'cosfsing =a, w' cosfcos¢=41u3+4, tang WA’ v 7, cos? 0’ (20-14)
which lead to a relation between ¢ and ¢, namely

acot¢ = ta*sec®f cosec3 g+ A. (20-15)

The special case a = 0 gives, of course, the Lanchester two-dimensional phugoids.
The three-dimensional phugoids can be explained very briefly as follows:
If for simplicity we take the case 4 = 0 (which, when a = 0 gives the semicircular
phugoid) we have from (20-13)
u'?cos?l = a?-+tu’S. (20-16)

When cos?f = 1, we have «'? = a®>+1u'S; we get two equal values of 2 from this
cubic for u'2 if a® = 2//3, and these equal values are 4’2 = /3 (the third root gives u'?
negative and can therefore be discarded). We find that cos?f is a minimum for this
value of 2, and that this minimum is unity. Hence we must have § permanently 0
(or 7), and we have circular motion of the aeroplane. The banking angle ¢ is given by
tan¢ = /2; ¥ is equal to the constant ag/V_,, and the radius of the circular motion is
the constant nV2, Jag (where n is the value of «’ in this motion), so that, since n* = /3
and a? = 2//3, the radius is /3V?2, /g.
The equation (20-15) for ¢ in terms of ¢ gives, with cos# = 1, the relation

acot¢ = $a®cosec® g+ A.
Putting 4 = 0, we get for ¢ the equation
cos p—cos3 ¢ = $a’. (20-17)
If a2< 2/ /3, (20-17) gives two different real values of ¢;

if a2 = 2//3, (20-17) gives two equal real values of ¢;
if a>2/,/3, (20-17) gives no real values of ¢.
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GENERAL MOTION OF THE AEROPLANE 343

Hence we must have a?=2/,/3. If a? = 2/,/3, the motion is circular and steady;
if a2 < 2/,/3, the motion is more general and variable.

Take, for example, a?> = 10/9; then cosf = 1 gives u;? = 2 and u;?2 = /6 —1; when
w2 =2, tang, = 4./5; and when 3% = /6 —1, tang, = £ ,/2(/6+1)%

The nature of the motion is now clear. Starting at a lowest point, where u;? = 2,
the aeroplane climbs with ¢ increasing from zero to a maximum, and then decreasing
again to zero, when the aeroplane is at a highest point with velocity u;? = /6 —1.
It then descends to a second lowest position at the same level as the first lowest; climbs
again to a second highest position, at the same level as the first highest; and so on.
The non-dimensional velocity, #’, decreases from /2 to ,/(/6—1) during each climb,
and increases from /(,/6—1) to /2 during each descent. All the highest positions are
at the same level; all the lowest positions are at the same level.

Meanwhile the vertical plane containing the x axis rotates about the vertical, always
in the same sense, with angular velocity y = (ag/V_,)sec?d. At the same time, the
aeroplane rotates about the x axis, as is indicated by the variation in ¢. At a lowest
position, tang, = 1./5; at a highest position tan¢g, = §./2(/6+1)%; and ¢ oscillates
between its smallest value ¢, at a lowest position and its greatest value ¢, at a highest
position.

More generally, with 4 still zero, let us put

a? = 3a(l—a) (2—a). (20-18)
We find that when cos?# = 1, we have the values of 4’2 given by
u?=3(l—a), uy®=—3(1—a)+3./(1+6a—3a?). (20-19)
Hence a must lie between 0 and 1.

The maximum value of a? is easily seen to be given by & = 1 —1/,/3, and this maximum
is 2//3, i.e. the case of circular motion. The range from & =1—1//3 to « = 1 gives
the same pair of values u;?, u;2, but interchanged, as the range from « =0 to
« = 1-—1//3. Thus, the case a®> = 10/9 that we have just discussed is given by « = ,
so that uj? = 2, uy?> = /6 —1; and by « = +(4—./6), so that u}2 = /6 —1, uy? = 2.

Itis interesting to find the angle by which y increases between a lowest and a highest
position. We find from (20-7) and (20-11) that

d a
e ] (20-20)

and this gives for the “apsidal angle’” between «; and u; the value

274 f AL - 20
v (W649a%) /(9u'2—u'®—9a2)’ ( _21)

if « is so chosen that uj>u;: we can make this choice without any restriction on the
result by taking « between 0 and 1—1/,/3.

It can be easily shown that when a? has its maximum value the apsidal angle is
1./27. Also it follows from the work of Mr D. Temple Roberts of Leeds University,
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344 S. BRODETSKY ON THE

that as a? diminishes the apsidal angle diminishes, and that when «? - 0, which
also means « — 0, the apsidal angle — 17, so that in going from a lowest position to
a highest position and then back to a lowest position, ¥ increases by 7.

When u}? = 3(1—a) we have, with cosf = 1,

sin?¢ = a(2—a).

Hence sin¢ = /(20 —a?), so that when « is small, ¢ is practically zero at a lowest point
of the path. When u5? = —$(1 —a) + 3 ./(1 4 62— 3a?), we have, with cos = 1,

sin? = §(1—) {(1 )+ /(14 62— 347)},
and when o is small this gives sing = 1—2a2,

so that ¢ is practically 47 at a highest point of the path.

We have then the Immelmann turn. Mr Roberts has calculated the motion ex-
plicitly, and the analogy to the Immelmann turn is quite close.

There is no difficulty in dealing with 4540. It has been worked out in some detail
already: the nature of the motion is like that obtained when 4 = 0. The Lanchester
phugoids, undulating and looping, are obtained as limiting cases «— 0. It is hoped
to publish the work soon.

If the engines are in action with moderate power, we get the same three-dimensional
phugoids.

21. (b) « small, of the first order; 1y of order —3, or larger; extended three-dimensional
phugoids. As in § 8, and using ¢ as independent variable, we now have from the fifth
equation (18-17)

w :—i-r'Q, (21-1)

so that the third equation now becomes, approximately,
’ ’ 19 S, Zw ’ ’ Y
—1"Qu’ = coslcosp—u Rl Qu'. (21-2)
R

The fourth and sixth equations (18-17) give again P = 0, and so we get the paths
defined by

! . Vo . s’z
r’fi-u—-:—smgzi, r"Ru’ = cos fsin ¢, —(1—{—~—w
Kk kg

)r'Qu' = cosfcosp—u'2, P=0;
(21-3)

do do
r' =%y, and P = —sind, Q:cosgziw—i—cosﬁsinqﬁ, R=—sin¢ﬁ+cosﬂcos¢.

Let us write K as in (8-3).
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GENERAL MOTION OF THE AEROPLANE 345

Equations (21-3) become, after a little manipulation,
r’ o _ sin 0, r’u’( —sin ¢é€ +cos  cos ¢) = cosfsin ¢,
dy dy
(21-4)
r'u

ZZ— Ku'?cos g —cos 0+ (1 —K) cos b cos? ¢, ‘%: sinﬁ.]

The first, second and fourth equations (21-4) are identical with the first, second and
fourth equations (20-7). Hence we at once deduce that

u' cosfsing = a. (21-5)
We get from the second and third equations (21-4) that

A A

r'u’ cos § = Ku'?sin ¢+ (1 —K) cos fsin ¢ cos ¢,

’ a 1-K .

m+~——cosﬁsm2¢cos P. (21-6)
Further, from the first and third equations (21-4) we obtain

dw' . ,db spdtt’ du’
cosﬂa—‘;—u s1nt9d¢-Ku d¢008¢+( K)dgﬁ

Edu—,(u’cosﬁ) = Ku'2cos ¢+ (1 —K) cos f cos? §, (21-7)

while by (21-5) sing =

SOCIETY

so that we deduce é—"g& =7 =

cosfl cos? ¢,

OF

i.e.

u'?cos?l0—a?)
u' cos ’

cos P = J

u' cos )’
Equation (21-7) therefore becomes

d,, N ,2J(u'2cos20 a?) u'? cos®l—a?
i (4’ cost) = Ku 7 cos +(1~K)cosﬁ-————~«u,2cosz.€ ,

ie. u’ H%J(u’Q cos2f—a?) -+ (K—1) /(u?cos?0—a?) = Ku'3.

This can be integrated and we obtain, corresponding to (20-13), the result
K n-x\’ \
u'200520:a2+(ﬂ—u’3+Au‘ K) , (21-8)
where 4 is an arbitrary constant.
We therefore have, corresponding to (20-14),

u' cosfsing =a, u cosfcos¢p = w3+ Au't K,

K42
21-9)

tan¢——-————‘—l————, ¥ = 4@ 5 {K+ _ZKcossﬂsin2¢cos¢}, (
K W4 A iK V_ , €OS 0 a
K+2

and, corresponding to (20-15),

OF

acotg = T(—K—FQ a3 sec3 f cosec? ¢+ Aal~Ksecl=K f cosec! K g, (21-10)

Vol. CCXXXVIIL. A. 43
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If we let K — 1, so that we really have « of zero order, we get all the equations of the
three-dimensional phugoids discussed in § 20.

Hence we have obtained ““ extended ” three-dimensional phugoids. Moderate engine
power does not affect them. These paths are more applicable to actual machines than
those of § 20: they are now being studied for « positive and « negative.

22. (c) « negligible. This case does not, in the three-dimensional problem, appear to
yield equations that can be dealt with in a simple manner.
We shall deal with (II) Standard Diving Condition elsewhere.

(III) STANDARD STALLED CONDITION: THE SLOW SPIN

23. In the standard stalled condition, not only is 7 much smaller than, and m,
different from, their values in the normal and diving conditions, but also [/, is now
practically zero. (Iftheincidence is beyond the standard stall, the effect of autorotation
comes in and /, becomes negative. We shall in this paper not go beyond the standard
stall. The spin with larger incidence is being investigated.)

We shall consider here, in an approximate manner, the case of stalling incidence
on the assumption that the stalling is not artificially delayed by such devices as slots,
etc., so that in the standard stalled condition y is only a moderate angle, say 15°. Itis
therefore possible to make a very rough first approximation in which sin y is considered
small, even if it is as much as }. This is, of course, not very satisfactory, but at the present
stage of our general study of aeroplane motion, this represents, at any rate, a first attack
on a difficult subject.

If now we take siny, a number like 1, to represent first-order smallness, then 7 is of
order —1, and, using the small machine discussed by Jones, we take 75" to be some-
what less than unity. We shall use the equations (18-17) with ¢ as independent variable.
It is, in fact, quite convenient to use ¢ if we desire to do so, but it seems more reasonable
to use ¥ in the case of a spin in which once again a feature is the increase of ¢ always
in the same sense.

At stalling incidence, £, is a number like 0-6 for conventional machines. Further,
X, Yy Y, are always negligible, while z, is practically zero at the stall. Also, at stalling

w

w

kR, kR, kR
are all either like unity or considerably less.
It follows, assuming that 7’ is of zero order, and that v’, w’ are small, of the first order,
at least, that the first three equations of (18-17), can to a first and rough approximation
be written

incidence x y, =z

r'% = —sinf, 7"Ru’ = cosfsing, —r'Qu" = coslcos¢—u'% (23-1)
Using the values of @, R of (18:15), we get the alternative form
,du’ . , ,db , , L.
rzi;—k =—sinf, 7'u W=uzcos¢~—cos5, r' cosf = u'sin ¢. (23-2)
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Note. In the standard normal condition z,/k, is a number of order —1, in the first
approximation appropriate to that condition. Hence w’ must be of the second order,
in order that it may be omitted in the third equation (18:17). In the present problem
z,/ky is of zero order; hence w" need only be of the first order, in order that we may
neglect it in the third equation (18-17). .

In the last three equations of (18-17), we neglect E/4, E/C, which are quantities of
the same order as siny in a conventional aeroplane at stalling incidence, as well as
(A—B)/C, which is also small, usually. Also, at the standard stall /,, n,, and n, are
negligible. Hence the last three equations (18-17) become :

Id ’ -B_"C 2] . le 11 /—'lr r,.r

r W(r P) ! QR = ~—(Eq)~2u v +(TS m, )—lruR,

’ d ’ C'HA 19 . me Tont ’ rot

r & (" Q) ——5 7 RP = (——mq )Nzu w' —(15")g7'u' Q, (23-3)
’ d ’ —nN\ .,

7@(7 R) —(T?z“;)ou?).

The constants are written in such a way that each quantity enclosed in brackets
is a positive number, and the suffix attached to each such pair of brackets indicates
the order of magnitude of the quantity inside, in terms of siny at standard stalling

incidence.
Let us again assume that P, @, R are no larger than of zero order. Then the third

equation (23-3) yields the first approximation

%ﬁ (¥R) — 0. (23-4)
This means that the angular velocity about the axis Gz is approximately constant, so
that we get a spin.
The nature of the approximation is that in (18-3) we make once again
| (i) X=0, (i) Y=0, (i) Z=—pSk,u?; (235)
to which we now add (iv) N=o0. '

Hence we are again neglecting the effects (i) of the drag, (ii) of the side-slip, and (iii) of
changes in the w velocity component, on the air resistance. We are (iv) also neglecting the moment
about the z axis or axis of yaw. Finally, we assume that the machine adjusts itself instantaneously
about the pitching and rolling axes in the Lanchester manner.

The result (23-4) enables us to write

V. , 1
=R (25:6).
where ¢ is an arbitrary constant. Then we get from the second equation (23-1)

u' = ccosfsing, (23-7)
43-2
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and from the third equation (23-2)

7" =¢sin? g, '

23-8)
L, (
so that U= v, sin ¢J
The radius of curvature of the horizontal projection of the path is
ucos 0 _ V_ylfl cos { _ vz, u C?S 19’ (23-9)
v griv., g 7
2 cos?
and this is equal-to V‘V C,O,S,H . (23-10)
g sing

The first two equations of (23-2) give, with (23-7),

. d . L ,df ¢*cosfsin?¢gcosd—1
cr W,(cosﬂsmqﬂ) == —sind, cr e sin ¢ ,

so that

cosﬁcosgﬁ% (1—c?cosfsin®¢gcos @) = sinfsin (2 —c?coslfsin?pcos¢g). (23-11)

Equation (23-11) gives the relation between ¢ and ¢; and, with (23-7), (23-8), the
problem is solved.
The constant ¢ can be defined as follows. At 0 = 0, cosf = 1, let ¢ have the value

@y, and " be called 7; then
n
The equation (23-11) is somewhat complicated. It can be simplified in appearance
by making the transformation

9,2\ 3 2\ 4 :
(z;) cos®fsind ¢ = § (2;) cost*@sin?¢ = y; (23-13)
when it reduces to ZZ == S (g —E&%). (23-14)

But simple integration does not seem possible. We can, however, make our analysis
yield a simple result if we make a restriction on the problem considered. This
consists in assuming that the quantity ¢? cos f sin? ¢ cos ¢ remains small. Equation
(23-11) now becomes

a(’lc; (cos?fsing) == 0,
b

or SIN @) = ——ps
¢ cos2f’

(23-15)

where b is another arbitrary constant; in fact 4 = sin g,
The velocity at = 0 is given by n = bc.
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, , be , b b2y 4 ..
WC now get u _EE;SAB’ r ———(':6*87479, %—7_; COS 0. (23 ].6)
dd g cos?d
Also, we now find that i —17_;—[);@
{e d(tant) g
e dt bV’
5 .
so that tanf = bV, Z, (23-17)

¢ being measured from the time when ¢ = 0: as time progresses, § becomes more and
more negative.
The radius of curvature of the horizontal projection of the path is, by (23:10),

P2
~b;—°'cos‘* g. (23:18)
We can get the approximate distance described by the centre of gravity. For consider

o, where
do = udt; (23-19)

it is the integral of the distance as measured along Gx (and since »’, v’ are small, this
is approximately the actual distance described by G). Write

=y
N SRV
then do’ = sz,udt =7 dy = cos3ﬁdﬁ’
so that o' = —3b%%{sec 0 tan 0 +log, (sec § +tand)},
VZ
and 7= ~§§Z b%c*{sec 0 tan 0 +log, (sec 0+ tan 0)}; (23-21)

¢’ (and therefore also ¢) being measured from the place where 0 = 0.

Since, after ¢ = 0, # is actually negative, tan @ is negative, and log (sec -+ tan @) is
also negative, so that ¢’, and therefore also ¢, is positive, and increases with the time.

We have obtained a rough presentation of the development of an ““incipient spin”’ of
moderate but stalled incidence. As time progresses the aeroplane turns downwards, as is
indicated by (23:17); its speed increases, as indicated by (23:16); its spin about the
vertical increases, as shown by (23:16); and the radius of curvature of the horizontal
projection of its path decreases, as shown by (23-18).

The applicability of these results is restricted by the fact that »’ is of zero order, that
P, @, R must not become large, and that ¢2 cos f sin? ¢ cos ¢ is small compared to unity.
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It can be shown that the restrictions amount to the condition that sin § must be com-
paratively small, so that the results (23:16)—(23-18) only apply to the beginning of the
spin, if, at § = 0, there exists a rolling displacement ¢,, while the rolling rotation then
1s zero, and the velocity «’ is not above a certain limit.

In order to deal with the later development of the spin we must use equation (23-11)
without the assumed restriction that ¢2 cos fsin? ¢ cos ¢ remains small.

It is satisfactory to note that we can deal, although in a roughly approximate
manner, with the initial stage of the spin, by the use of comparatively simple analysis.
It is a slow spin, since 7’ is assumed of zero order, and thus y is small, of the order
g/V_.,. This means that the spin, if it were fully developed, would be at the rate of
three or four turns per minute.

AEROPLANE WITH DISPLACED CONTROLS: ADDITIONAL MOMENTS

24. We have so far taken the aeroplane to be symmetrical. Let us now suppose
the controls displaced and held fixed. Since the symmetry of the aeroplane is only
slightly disturbed, the areas of the rudder and ailerons being small compared to the
wings, we can use the same non-dimensional derivatives as before, but we must add
the effects of the displaced controls.

If the ailerons are turned through an angle § radians, starboard (right) down, port
(left) up, the elevator through an angle 7 radians, z—«, and the rudder through an
angle { radians, x>y, then, £, 7, { being moderate, the additional moments about the
axes Gx, Gy, Gz can be written in Jones’s notation, suitably extended,

A B C )
_pVZSSW L, —pV2Ss ns? m,E, ~-—,0V285W ;s

A B C
——pVZSs%s—Zlﬂfy, —,onSs;ﬁ;ém,]ﬂ, —pVZSs%?nM; (24-1)

A B C
——pVZSsW 5, —pV2Ss L g, —pVQSsﬂ—Z;anC.

The additional forces along the axes are not required.

We can with moderate incidence ignore m, I,, n,, Iy, my. For n, (see Jones, p. 85)
in a conventional machine we can use a number like 0-2 in diving or normal conditions,
and a number like 0-1 in stalled condition. With aileron setting not beyond - 20°, /;is a
number like 3 in diving or normal conditions, and like 1-5 in stalled condition; 7, is
anumber like — 0-1 at diving or normal, and like — 0-15 at stalled condition.

We need not make any estimate of m,, since it is only required in order to main-
tain the rotation about the y axis, and does not, as we shall soon see, affect the first
approximation paths.
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If we use 0 as independent variable, then in the last three equations of (18-9) we
have on the right-hand sides:

l [ l [
. vy b 1t v £ 19
T(m—qu v +fmqs u'q P—|-~—mq su'q R+m-qu g),
. zll_v ro! I m’iI 19 ) .
'r(mquw -Hqu—i—m—qu 1), (24-2)

n n
ﬂés/u/qlp_i_gl-r_S/u/q/R_i_Eg_u/Qg_i__gu/Qé);
q

n
— T(__U u/v/ +_
m m

q q q m

q

where the non-dimensional «’, v’, ... are defined with reference to V., of the aeroplane
when { =0, 7 = 0, { = 0; and where P, @, R are defined as in (18-5). Corresponding
values are easily written down for ¢ or for ¥ as independent variable.

(I) STANDARD NORMAL CONDITION

(a) « of zero order

25. We again have subtypes depending on the value of m,/m, or «; but we shall
only deal with « of zero order. It is easy to extend to small values of «.

In the standard normal condition, with siny defining first-order smallness, 7, is of
order —2 or larger. If« is of zero order, we get that w’ is of the second order. Several
cases can be considered; we shall discuss two, which give rise to interesting problems.

26. (a,1) Small asymmetry: three-dimensional phugoids. Let & be of such a size that [, £ is
a quantity of the first order. This makes £ numerically not more than about 3 or 4°. We
see that n.£ is smaller than of the second order. Then, using (24-2) as in § 20, we can,
to the first order, put L' +1,5'¢ P+15'g R+ulE =0, (26:1)
Again, let { be of such a size that n,{ is a quantity of the second order, which means
that { is numerically not more than about 5 or 6°. We can, to the first order, put
n,v' +n,s'q'P+n,.s'¢ R+ung+un = 0. (26-2)
With the usual values of the rotary derivatives at normal incidence we deduce
from (26-1) that, to the first order,

(L,8') ' P+ (L) u' = 0, (26-3)
so that, as a first approximation,
q'P LE , _V_y . _a’¢ . A
7——1127:—/1, where q —?6, P—%—Slnaﬁ, (26‘4:)

-

and x is at most of zero order value, defined by the comparatively small quantity L:E.

Since /, is also quite considerable, like 2, it may be useful to reduce the coefficient
of ¢'R by combining equation (26-1) with some appropriate number, £, times equation
(26-2). With Jones’s machine, p. 184, we can use £ = 4 or 5.
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Ifv" and ¢'R are in this way practically cancelled out of existence, we get that, to the
first order,

(I, +kn,s') g P+ (I +kngE+knl) w' = 0; (26-5)
and if we write lgi@éj_’i’féé =y, (26-6)
lp+/mps'

we have once again equation (26-4) as a first approximation.
With ¢ or ¢ as independent variable, we get respectively, instead of (26-4),

PP . V. B LAy
w = where p' =- §¢’ and P=1 ~sm(9-d;/)-, (26-7)
r'P V., . d¢ A
— = — ’ = ——-Z e e 1 .
or v U4, where p z ¥, and P i sin . (26-8)

Equations (26-4), (26:7) and (26-8) are of course the same, and we can use whichever
we like, depending on the choice of 6, ¢ or ¢ as independent variable.

If 4 = 0 we get P = 0 as in § 20, so that the problem there discussed is a special case
of what we are now considering. We have g = 0 if { = 0, { = 0, i.e. if the machine is
symmetrical and the asymmetric controls are not displaced from their neutral positions.
But we can also get x zero for non-zero values of £, {: it will be readily verified that
settings in which §, { satisfy the condition

AE+{=0, (26-9)

will give x practically zero, A being a positive number like 2 or 3, its exact value
depending on the detailed construction of the machine.

This kind of setting is a ““ perverse’ one, since it makes the ailerons turn the machine
in one sense and the rudder in the opposite sense; this is of course the meaning of u
being zero.

If 4= 0, we have the three-dimensional phugoids of §20, defined by equations
(20-7) with ¥ as independent variable. The approximation means once again that
we neglect the drag, the air resistance effect of side-slip, and the air resistance effect of changes in
the w velocity component. While we assume that the machine adjustsitselfin the Lanchester
manner about each of the yawing, pitching and rolling axes.

There is an apparent difficulty due to the fact that the machine is not symmetrical
when £, { are not zero, so that its steady glide is in general on a helix. If in this
helical glide the banking angle is ¢,, then it is easy to prove that the new gliding
angle 7,, the new gliding velocity «1V_,, and the rotation (g/V",) r;, are given approxi-
mately by

y, = ysecg;, u?=secg,, riu;—=tang,. (26-10)
But the non-steady motion is again given by (20-4), (20-5) or (20-6); so that an aero-
plane possesses only one set of three-dimensional phugoids for any given condition.
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With x4 5 0, the equations (20-7) become

r’%} = —sind, r’u’(—singéj—;-{—cosﬂcos ¢) = cosfsin ¢,

r’u’(cosgé%%—f—cosﬂsingﬁ) = u'2—cosf cos @, %—I—ﬂ% =sinf. (26-11)

The approximation has the same significance as when y = 0.

A A

SOCIETY

OF

A A

SOCIETY

We get again equations (20-8) and (20-12) namely
cosﬂsin¢-dll—u’ sinﬁsin¢—[li9+u’ sinf cosfcos¢ = 0 (26-12)
@ dy ‘ ’
diu’ (u' cosf) = u'2cos . (26-13)
In (26-12) we use the value of sinf given by the last equation of (26-11), and we
deduce
a (u' cosfsing) = —,uyfcosﬁcosgzﬁ'
dy 7’ ’
i d,, . _ ucost d
so that, by (26-13), W(u cosfsing) = —-—r,—W(u cosf)
d, ,
=pucot ﬁw(u cost),
using the first equation of (26-11).
We thus find a relation between «’, 6, ¢ in the form
d(u’ cosOsin¢) = pcotfd(u’ cosf) (26-13)
an obvious extension of (20-9) which is obtained when x = 0.

We have then the beginning of the study of what we may call the unsymmetrical
three-dimensional phugoids.

27. (a, ii) Large aileron displacement: the slow roll. Let us now suppose that £ is so large
that /;£ is a quantity of zero order; this means that{ is an angle like 4 radian, or 20°.
Let { be zero, or small as in (a,1). We shall use ¢ as independent variable, and the
equations of motion (18-13) with the terms due to the controls included as in (24-2).

Owing to the size of /£, we can no longer use the assumptions that p’, P, @, R are of
zero order. Let us now assume that p’ is large and of order — 1, while P is of zero order,
and @, R are small, of the first order. The components «’, w” are still assumed small,
of orders to be soon defined.

The first equation (18:13) gives at once the approximate result

w
9 u = a, (27-1)
where ¢ is an arbitrary constant of zeto order.
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If 7y is of order —3, or larger, the fifth equation (18-13), using (24-2), makes w’ a
second-order quantity, since « or m,/m, is of zero order, and also E is small compared
to 4, B, C.

The fourth equation, using (24-2), gives, taking only the largest quantities on both
sides, ,d ar ,,
P @ (p P) Ry (lpsp P‘;“algg)'

q
Writing " = (V. /g) ¢, we get, since P¢ — p, that
dp g aTlps’( ga zgg)

&=V, m, P s)

and the coefficient outside the bracket on the right-hand side is of order —1. Hence p
tends very quickly, in a fraction of a second, to the terminal constant value

(27-2)

S VO S :
Y/ VL5 iLe. p'P= alps" (27-3)

Now we have postulated that ¢ and R are first-order quantities, which is, by (18-11),
seen to imply that df/d¢ and dy/dp are small. Hence to our degree of approximation
we can write P—1, (27-4)
and we get b= —pa, (27-5)
where x is once again the constant /;/l,s’, but is now a large quantity, of order —1;
p’ as postulated is also of order — 1, while the rolling velocity p is of zero order, since

= (V)

The aeroplane therefore rolls approx1mately at a constant rate, going through
a complete revolution in a time like 6 seconds, the slow roll.

From the sixth equation (18-13), using (24-2), we deduce that v’ is of the first order,
since n, is in the case of normal condition a comparatively small number. If then we
turn to the second and third equations of (18-13) we get, approximately,

ﬂa(jgs +aR) —cosfsing, pa(v'—aQ) =a®—cosbcosy,

d (v’ 1 . v 1
so that 88(-(;)+R:—ﬁc—l§c03631n¢, fd—Q:W(az—cosﬂcosgﬂ). (27-6)

But let us examine the sixth equation (18-13) in detail, using (24-2). Putting P = 1,
p’ = — pa, and ignoring E/C, we get, since 7 is of order —3, x of order —1, 5" of order 2,
R small, @ small, and n.£+n,( also of the second order of small quantities, that this
equation reduces to V'

n, —n,s'p=0,
assuming that the aeroplane is not directionally neutral and », exists. In this case
we have, approximately, 2

np B
E — lu, (27'7)

a first order constant quantity in the case of Jones’s machine (p. 184).
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Thus equations (27-6) become

cos fsin ¢
a2

UR = — s HQ =g —a, (27-8)

where « =1—u%'n,/n, a quantity of zero order.
We therefore get, by (18-11),

do . dy
2 av a\ _ — aa?
ua (cos¢d¢ kcosﬁs1n¢d¢) cos 0 cos ¢ —aa?,
/mz(—sinqﬂ%—]—cosﬁcosgég%) = — cosfsin ¢,
' df  cosf « &y a. )
so that b~ W——}—lcosgzﬂ, cos ﬂj" = ——;‘smgé. (27-9)

If then a is not too large, we get by a graphical examination of equations (27-9) that
df/d¢ is always fairly small, being sometimes positive and sometimes negative; so that,
beginning with more or less horizontal motion, ¢ remains small; hence dy/dg also
remains small. Itisalsofound thaton the whole, as ¢ increases, § decreases algebraically,
which means that with each complete roll the machine loses some height; this agrees
with experience.

If we make 0 small in (27-9) we get approximately

p(0—00) = by—asing, u(y—yy) — —a(l—cosg), (27-10)

where 0, ¢, as the values of 0, ¥ when ¢ = 0.

We have therefore obtained a first approximation to the slow roll. It is true that
this has been done with the assumption that 7y is of order — 3, but, as already pointed
out, § 8, this is not a serious restriction.

The significance of the first approximation is that we again neglect the drag, the effect
of side-slip and the effect of changes in the w velocity component. We now assume the Lanchester
adjustment for the yawing and pitching axes; about the rolling axis there is such a rate of
roll that the rolling moment due to the displaced ailerons balances approximately the
air-resistance moment due to the roll.

The slow roll has been worked out in detail by Mr S Kirkby of Leeds University,
who has extended the investigation to first order values of x. He has also dealt with
the engines in action, and has examined the aileron roll in a dive, as well as other
rolling motions. In so far as the results can be compared with observation, they are
satisfactory.

The author desires to express his gratitude to Professor Bairstow for valuable criti-
cisms and suggestions, and to the collaborators mentioned above for their fruitful
co-operation.
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